Lecture 17: QED experiments

H. A. Tanaka



Step I/ll: The Feynman
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Step lll: Summing over spins:

- To get |[M|? we need to take the complex conjugate of the M:
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Step [V (continued)

- Put it all together:
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* Since we are averaging over the initial spins, we need to divide by 4:
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Step Vi The Kinematics:
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—lectron/Positron Machines around the World
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- Before there was the LHC there
was LEP

- “Large Hadron Collider”

- “Large Electron Position” Collider



—|sewhere:

 Left: KEK-B ring at KEK (Tsukuba, Japan)
* Top: BES spectrometer (Beijing, China)
« Other machines:
- PETRA at DESY (Hamburg, Germany)
- VEPP at BINP (Novosibirsk, Russia)




Detectors

Magnet Coil
W EtectronPhoton Detector
. Cherenkov Detector
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W support Tube
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- Most detectors share a similar “cylindrical onion” design
* Inner tracking region (silicon, drift chambers)
 Electromagnetic calorimetry (measure and identify electron/photon energy)
* Muon detector: identify muons by their penetration through lots of material
 Tracking and other parts of detector in magnetic field for momentum

- Particle identification devices based on “velocity” measurements



—vents at BaBar

- et+e” —et+e” event at BaBar (Bhabha scattering)
* Note “straightness” of tracks:
 Large deposition in electromagnetic calorimeter

» et+e” —ut+u would look similar, but without large
energy deposition in the calorimeter

» “Hadronic” event at BaBa \

* Particles like b, c quarks &=
produced which initiate a S,
decay chain

* “Full reconstruction”
sometimes possible
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Now some physics:

- We derived the amplitude for ete” — [*[
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* m = electron mass, M = lepton mass. Let’s ignore the electron mass (E
large enough that (mc?/E) is very small:
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 Recalling our cross section formula:
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* Integrate over the 6, ¢ to obtain the total cross section:
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Ratio of cross sections:

- et+e” —»ut+u has a very distinct signature in the detector

- “Normalize” e*+e- —t*+7 In the detector by taking the ratio:

Ortre /1= (M.c2/E)2 1+ L(M,?/E)?
- 2 2 . 1 2 2

Optp= /1= (Muc?/E) 1+ 5(Myc?/E)

 Note: numerator is imaginary when E < M.c?: this is a threshold requirement
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step E, count "+ and u*+u- events
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e Ratio is effectively Ry,

e Energy R..(E) depends on the spin of the z:

e |f the particle were a scalar or vector, it would
have a different E-dependence

e \Measures r mass:

W. Bacino et al.



Angular Distribution

* From our amplitude expression:
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- if we go to even higher energies E >> Mc?, we obtain the simple form:
(IMJ?) = g2 [1 + cos® 0]

- Recalling our cross section expression
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Cross Section at High

—nergy:
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» If we use our same approximation: Mc?<<E

)

hco 1 [ Mc
_ _ 2 _
0—3(E>\/1 (Mc?/E)? 1+2<E
* becomes:
o ( hc_oz>2 = 2.2x10°° mb/E%(GeV?)
3\ E = 22 nb/E?(GeV?)
E (GeV) Cross section (nb)
14 0.44
22 0.18
34 0.075
43 0.047




Bhabha Scattering:

- Similarly to [*/- production, we can also produce e* e pairs

- Note extra diagram:
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Quark Production in e* e annihilation

- Similarly to [I*/" production, we can also produce quark/anti-quark pairs

* All the calculation steps are the same except:

* Quarks do have not unit charge (1/3, 2/3) need to account for this

* Quarks have colour: three possibility for pair production



Cross section for quark production

» Let’s use our assumption that E > Mc?, where M is now the mass of the quark
r (hea\? r (hea\’
0O — g (f) O"u—l—’u— — § <f) — 0q:q; — SQ? X O-,U-l_,UJ_

- Sum over all the quark species that are produced in the collision.
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* The quark species produced will depend on the energy
- Below the charm threshold (~3.8 GeV) :
R=3x((2/3)+(1/3)* + (1/3)%) =2

« Between charm/bottom thresholds:
R=3x((2/3)+(1/3)* + (1/3)* + (2/3)%) = 10/3

* Above bottom threshold: (~10 GeV)
R=3x((2/3)*+(1/3) + (1/3)* + (2/3)* + (1/3)*) = 11/3



Ratio of Quark/Muon Production
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- Situation is much more complicated than our naive picture

- However, the need for the factor of 3 from color is unambiguous.



The spinning electron

- On considering the splittings in the spectra of
hydrogen atom, Goudsmit and Uhlenbeck
introduced the idea of a “spinning electron”

- The spinning of a charged object produces a
magnetic moment that results in spin-orbit
coupling

- They submitted it to Ehrenfest and met with him

- Ehrenfest: a charge that rotates like that
Impossible

- Too bad, already submitted it!

“Well, it’s a nice idea, though it may be wrong,.
But you don’t yet have a reputation so you
have nothing to lose.”




Other thoughts:

+ Others had already considered this?
Heisenberg:
- Congratulations “on your courageous note.’
- “What did you do with the factor of two?”
+ Goudsmit and Uhlenbeck:
- Why is it courageous?
- What factor of two?

- As it turns out, the splittings are larger by x2
then one would naively expect from non-
relativistic considerations.
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Pauli: “I was so stupid when | was young!”

Thomas: special relativity introduces a factor of two



The “gyromagnetic ratio”

h
p=gpps/h g = —
2m

Ratio of the magnetic moment to spin times the Bohr magneton
- As It turns out, this is not exactly 2 for an electron
a=(g-2/)2 ~ 0.00115965218073(28) (current measurement)
- The departure from “27 Is called the “anomalous moment”
results from higher order corrections
first calculated by Julian Schwinger in 1948
a~a/2m=0.0011614




The muon g-2 experiment
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FIG. 3. Positron time spectrum overlaid with the fitted 10
parameter lunction (* /dol= 3818/3799). T'he total event

sample of 0.95 % 107 ¢ with £ > 2.0 GeV is shown.
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* Predicted: (g-2)/2 = (1165918.81+0.38)x10° wo:_-» e o] %
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