Progress Update

Trevor Towstego
UofT Neutrino/DM Meeting
August 29, 2018

Notes from Collaboration Meeting

- Plenary talk went well
 - No major comments/critiques
 - Some confusion over how I defined efficiency
 - Make it more clear in future plenary talks
 - Mark Hartz mentioned that 1e events (i.e. $\nu_{\rm e}$ CCQE-like) events should be classified as signal
 - I have some reservations about that
- Pre-meeting also went well
 - Cris: Might want to see difference in output of BDT when training on two different samples (i.e. split training sample it 2)
 - Mike: Selection might benefit from "stacked" BDTs to remove specific backgrounds
 - ex. first BDT removes NC1 π^0 background, next BDT deals with some other background, and last BDT selects for final sample

Reminder: BDT v1 Trial 8

- Preliminary cuts:
 - FCFV
 - possible 2Repi
 - <u>v1</u>:
 - 0 de: $2Re\pi$, $2R\pi e$, and $3Re\pi\pi$ sub-samples
 - 1 de: 1Re, 2Ree, 2Re π , 2R π e, 2R μ e, and 3Re π π sub-samples
 - <u>1/2 sub-events</u>
 - separate samples
 - $E_{rec}(1e,1\pi) < 1.5 GeV$

	BDT variables								
	1R v 1R nll	1R v 2R nll	2R v 2R nll	2R v 3R nll	3R v 3R nll	3R v 4R nll	1R+2R kinematics	E_{rec} , towall e, towall π , p_{low} , $m_{\pi 0}$, $(d2se)$	1R+2R+ 3R fit indices
Trial 8			-	-	•			-	•

BDT Grid Search Results (v1 trial 8)

MinNodeSize = 5, NCuts = 20

MaxDepth	2	3	4	5	6	7	NTrees
0 decay e	0.479	0.502	0.507	0.507	0.515	0.513	10
	0.519	0.559	0.547	0.562	0.570	0.567	100
	0.557	0.570	0.570	0.580	0.583	0.580	850
	0.555	0.567	0.572	0.585	0.584	0.577	1500
	0.554	0.562	0.565	0.565	0.565	0.561	10000

MaxDepth	2	3	4	5	6	7	NTrees
1 decay e	1.053	1.067	1.079	1.107	1.124	1.124	10
	1.114	1.163	1.164	1.178	1.197	1.182	100
	1.171	1.197	1.190	1.188	1.196	1.189	850
	1.174	1.195	1.186	1.193	1.189	1.192	1500
	1.171	1.163	1.167	1.163	1.163	1.165	10000

BDT Grid Search Results (v1 trial 8)

MaxDepth = 5, NTrees = 1500

MinNode Size	0.05	0.5	1	5	NCuts
	0.581	0.590	0.584	0.565	10
0 docay o	0.603	0.599	0.603	0.585	20
0 decay e	0.605	0.620	0.604	0.593	50
	0.604	0.612	0.622	0.591	100

MinNode Size	0.05	0.5	1	5	NCuts
	1.193	1.203	1.197	1.179	10
1 doony o	1.193	1.202	1.193	1.193	20
1 decay e	1.209	1.230	1.218	1.187	50
	1.233	1.217	1.220	1.196	100

<u>MinNodeSize</u>: Minimum percentage of training events in a leaf node <u>NCuts</u>: Number of grid points in variable range used in finding optimal cut in node splitting

Other Notes

- Spent some more time on loose cuts to improve efficiency of BDT pre-selection
 - Again, no success my cuts were slightly more efficient than "v1", but significantly less pure, resulting in a poorer-performing BDT
- Now trying to figure out why my BDT code uses so much memory
 - ROOT Tree file sizes seem to be very large relative to the number/size of the variables that they are storing
 - Would be nice to have this issue dealt with to more liberally explore BDT performance