Progress Update

Trevor Towstego
UofT Neutrino/DM Meeting
June 28, 2018

T2K-SK MC Issues

- Looking towards adding more likelihood ratios (2Rµe, 3R, etc.)
 - Yoshida-san has recently re-processed T2K-SK MC
 - new ROOT files contain all fiTQun information, but don't contain other information to make file size more manageable
 - Trying combine relevant fiTQun information and other information I need from older T2K-MC files
 - In doing so, I found some discrepancies with the T2K-MC files I had been using previously, which Yoshida-san and Cris have been helping me with
- I'm using Sophie's copy of the T2K-SK
 14c MC on the NEUT cluster at TRIUMF

Processing MC 1: added 201 files. 391706 antiNue events. Processing MC 2: added 200 files. 200000 antiNue events.

Processing MC 1: added 201 files. 391934 signalNueb events. Processing MC 2: added 200 files. 200000 signalNueb events.

Processing MC 1: added 201 files. 391948 signalNue events. Processing MC 2: added 200 files. 200000 signalNue events.

Processing MC 1: added 201 files. 391812 bkgNue events. Processing MC 2: added 200 files. 200000 bkgNue events.

Processing MC 1: added 1000 files. 979171 antiNumu events. Processing MC 2: added 1000 files. 1000000 antiNumu events.

Processing MC 1: added 1000 files. 979404 numu events. Processing MC 2: added 1000 files. 1000000 numu events.

MC 1 = previous MC files
MC 2 = new MC files with fiTQun information

Recall from January...

Previous cutflow result:

Sample	cut	numu/nu mub CC	intrinsic nue/nue b CC	osc nue/nue b CC	numu/nu mub NC	intrinsic nue/nue b NC	Signal	Bkgd	Purity	FOM
2Repi	baseline	1.48	1.00	0.88	3.17	0.11	0.88	5.76	0.13	0.342
	Erec < 1.5 GeV	0.28	0.41	0.79	2.45	0.08	0.79	3.22	0.20	0.392

New cutflow result:

Sample	cut	numu/nu mub CC	intrinsic nue/nue b CC	osc nue/nue b CC	numu/nu mub NC	intrinsic nue/nue b NC	Signal	Bkgd	Purity	FOM
2Repi	baseline	1.48	2.00	1.76	3.17	0.21	1.76	6.87	0.20	0.601
	Erec < 1.5 GeV	0.28	0.82	1.57	2.45	0.16	1.57	3.72	0.30	0.683

- It appeared that ALL nue event rates are higher by a factor of 2 after the change (not just oscillated, but intrinsic as well)
- I changed the script back to how it was before, re-ran it, and got the same result
- Note that the root file that this script uses has not changed since December (to my knowledge) and is stored locally on my laptop

18-01-11

Recall from January...

Previous cutflow result:

Sample	cut	numu/nu mub CC	intrinsic nue/nue b CC	os nu b C	e/nue	numu/nu mub NC	intrinsic nue/nue b NC	Signal	Bkg	jd	Purity	FOM
2Repi	baseline	1.48	1.00		0.88	3.17	0.11	0.88		5.76	0.13	0.342
	Erec < 1.5 GeV	0.28	0.41		0.79	2.45	0.08	0.79		3.22	0.20	0.392

New cutflow result:

Sample		cut		numu/nu mub CC	intrinsic nue/nue b CC	osc nue/nue b CC	numu/nu mub NC	intrinsic nue/nue b NC	Signal	Bkgd	Purity	FOM
2Re _l	i	baseline		1.48	2.00	1.76	3.17	0.21	1.76	6.87	0.20	0.601
		Erec < 1.5	GeV	0.28	0.82	1.57	2.45	0.16	1.57	3.72	0.30	0.683

- It appeared that ALL nue event rates are higher by a factor of 2 after the change (not just oscillated, but intrinsic as well)
- I changed the script back to how it was before, re-ran it, and got the same result
- Note that the root file that this script uses has not changed since December (to my knowledge) and is stored locally on my laptop

MC Issue Now Fixed

- In December of 2017, someone used the "hadd" command to put events of type
 nue_x_nue,
 nuebar_x_nuebar,
 numu_x_nue, and
 numubar_x_nuebar
 into a single ROOT file
 - Unfortunately, this file was left in the same directory as the other files, so ever since then my code has been double-counting all $\nu_{\rm e}$ events
- FOMs will be worse, but work done towards improving it is still viable!

```
Processing MC 1: added 200 files. 195853 antiNue events. Processing MC 2: added 200 files. 200000 antiNue events.
```

```
Processing MC 1: added 200 files. 195967 signalNueb events. Processing MC 2: added 200 files. 200000 signalNueb events.
```

```
Processing MC 1: added 200 files. 195974 signalNue events. Processing MC 2: added 200 files. 200000 signalNue events.
```

```
Processing MC 1: added 200 files. 195906 bkgNue events. Processing MC 2: added 200 files. 200000 bkgNue events.
```

```
Processing MC 1: added 1000 files. 979171 antiNumu events. Processing MC 2: added 1000 files. 1000000 antiNumu events.
```

```
Processing MC 1: added 1000 files. 979404 numu events. Processing MC 2: added 1000 files. 1000000 numu events.
```

Some Remaining MC Discrepancies

- Cris suggested the differing event numbers could be due to events with unphysical true vertices being removed at the fillnt stage
- With nev variable, should be able to combine MC files into new ones that contain all the information I need to further investigate BDTs
 - Currently working on code to do this
 - Some concerns about not all multiring information
 - Cris suggested all 200 MR fits should be there, but after briefly looking at MC files in TBrowser I'm not so sure

```
Processing MC 1: added 200 files. 195853 antiNue events. Processing MC 2: added 200 files. 200000 antiNue events.
```

Processing MC 1: added 200 files. 195967 signalNueb events. Processing MC 2: added 200 files. 200000 signalNueb events.

```
Processing MC 1: added 200 files. 195974 signalNue events. Processing MC 2: added 200 files. 200000 signalNue events.
```

```
Processing MC 1: added 200 files. 195906 bkgNue events. Processing MC 2: added 200 files. 200000 bkgNue events.
```

Processing MC 1: added 1000 files. 979171 antiNumu events. Processing MC 2: added 1000 files. 1000000 antiNumu events.

Processing MC 1: added 1000 files. 979404 numu events. Processing MC 2: added 1000 files. 1000000 numu events.

Fixed MC: Improved eπ-like Cut

old baseline

	osc. ν _e CC FOM	true 1e1π	other	purity	eff.	1e1π FOM	net purity	net eff.
0de	0.370	0.71	3.10	18.5%	27.5%	0.362	24 020/	32.39%
1de	0.697	1.75	2.15	45.0%	34.9%	0.888	31.92%	

new baseline: $2Re\pi + 2R\pi e + 1Re + 2Ree + 3Re\pi\pi + 2R\mu e$

	osc. ν _e CC FOM	true 1e1π	other	purity	eff.	1e1π FOM	net purity	net eff.
0de	0.381	0.70	2.32	23.3%	27.4%	0.405	32.60%	44.89%
1de	0.994	2.71	4.73	36.4%	53.8%	0.992	32.00%	

Efficiency: 32.4% → 44.9% Purity: 31.9% → 32.6%

<u>Note</u>: I did attempt to combine the $2R\pi e$ and $2R\mu e$ samples into a single sample, but couldn't get performance to be better than it would be without the $2R\mu e$ sample

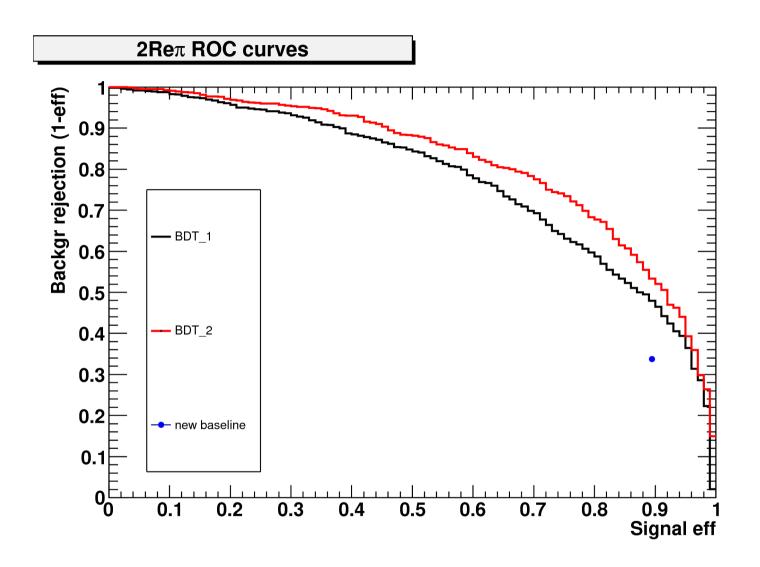
Using BDTs: Attempt 1

- Preliminary cuts:
 - FCFV
 - possible 2Repi
 - 0 de: i2repi==0 || i2rpie==0 || i3repipi==0
 - 1 de: (i1re==0 && !Is1re && !Is1re1de) || i2ree==0 || i2repi==0 || i2rpie==0 || i2rmue==0 || i3repipi==0
 - 1/2 sub-events
 - · separate samples
 - $E_{rec}(1e,1\pi) < 1.5 \text{ GeV}$
- BDT variables:
 - nll1re-nll1rmu
 - nll1re-nll2repi
 - nll1re-nll2rpie
 - nll1re-nll2ree
 - nll1rmu-nll2repi
 - nll1rmu-nll2rpie
 - nll1rmu-nll2ree
 - nll2repi-nll2rpie
 - nll2repi-nll2ree
 - nll2rpie-nll2ree

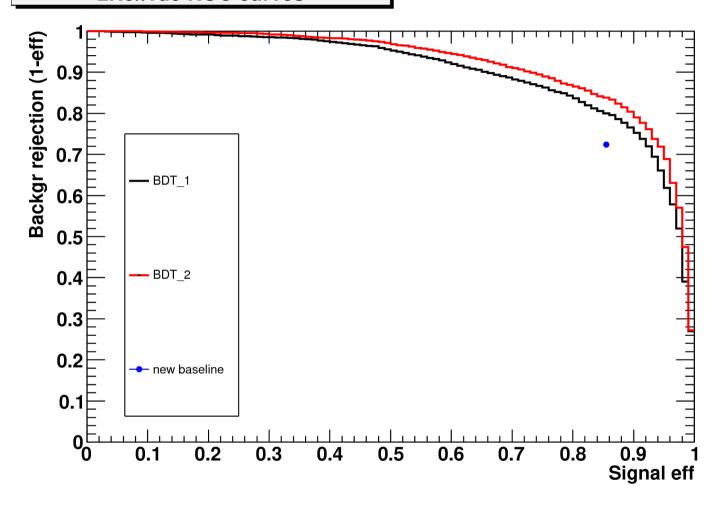
		Signal	Bkgd	Purity	Eff	FOM
2Reπ	New BL	0.70	2.32	23.3%	27.4%	0.405
ZREIL	BDT 1	0.71	1.84	27.9%	27.8%	0.446
2Dowldo	New BL	2.71	4.73	36.4%	53.8%	0.992
2Reπ1de	BDT 1	2.52	2.64	48.8%	50.0%	1.108

- NTrees = 850
- MaxDepth = 3

Note: Signal = true $1e1\pi^{+/-}$ events


Using BDTs: Attempt 2

- Preliminary cuts:
 - FCFV
 - possible 2Repi
 - 0 de: i2repi==0 || i2rpie==0 || i3repipi==0
 - 1 de: (i1re==0 && !ls1re && !ls1re1de) || i2ree==0 || i2repi==0 || i2rpie==0 || i2rmue==0 || i3repipi==0
 - 1/2 sub-events
 - · separate samples
 - $E_{rec}(1e,1\pi) < 1.5 \text{ GeV}$
- BDT variables:
 - nll1re-nll1rmu
 - nll1re-nll2repi
 - nll1re-nll2rpie pe 1re
 - nll1re-nll2ree pmu 1rmu
 - nll1rmu-nll2repi– pe 2repi
 - nll1rmu-nll2rpie ppi 2repi
 - nll1rmu-nll2ree pe 2rpie
 - nll2repi-nll2rpie– ppi 2rpie
 - nll2repi-nll2reepe1_2ree
 - nll2rpie-nll2reepe2_2ree


		Signal	Bkgd	Purity	Eff	FOM
	New BL	0.70	2.32	23.3%	27.4%	0.405
2Reπ	BDT 1	0.71	1.84	27.9%	27.8%	0.446
	BDT 2	0.61	0.98	38.4%	23.7%	0.484
	New BL	2.71	4.73	36.4%	53.8%	0.992
2Reπ1de	BDT 1	2.52	2.64	48.8%	50.0%	1.108
	BDT 2	2.58	2.35	52.4%	51.3%	1.162

- NTrees = 850
- MaxDepth = 3

Note: Signal = true $1e1\pi^{+/-}$ events

2Reπ1de ROC curves

Comments from T2K-SK Meeting

Roger:

- Should start to consider how to deal with systematics if going forward with a BDT-based analysis
 - In general, BDT seems like the right way to go, but not much precedent for dealing with BDT systematics in T2K
 - Ask some ATLAS people around the office
- Before moving fully towards BDT-based analysis:
 - Get an idea of what additional events will be present when using BDTs vs. cutsbased analysis
 - i.e. are these events actually good $2Re\pi/2R\pi e$ fits?
 - Look at E_{rec} , p_e , p_{π} , and vertex resolution
 - Since we are adding 3-ring (and possibly 4-ring) events, make sure I understand what fiTQun is reconstructing as additional rings
 - Look at secondaries stack