Weekly Meeting

June 28 2018

SNOLAB Projections – Some Hiccups

- Although I had some initial projections, I needed to adjust a few elements to make it aligned to SNOLAB
 - The σ_E of the signal (energy resolution) in the limit calculation
 - Adjusting the analysis thresholds
- I also spend some time cleaning up the code. Instead of my ad-hoc approach to dark photon search, made it a separate code to run, and made it so setup files know whether to set WIMP parameters or dark photon parameters (defining analysis thresholds, masses to search for, etc)
 - Initially this is where I thought my problems were coming from

Energy Resolution in Limit Code

- For SNOLAB:
 - Using 'Goal' energy resolutions: 10 eV (7 eV) for Ge (Si)

Analysis Threshold in Limit Code

- In CDMSLite R2:
 - Lower threshold set at 0.0551 keV
- For SNOLAB:
 - Lower thresholds set at thresholds experiment thresholds: 100 eV (Pt) for both Ge and Si
 - This corresponds to 2.9 eV in Ge and 3.67 eV in Si

Comparing these limit projections

Comparing these limit projections

Comparing these limit projections

7

Comparing these limit projections from yesterday

Comparing these limit projections from yesterday

Comparing these limit projections from

Problems with converting from E_nr to E_ee

- I noticed this while trying to determine the thresholds
- The thresholds are 100 eV (Pt) for both Ge and Si
- Using $P_t = E_{ee} \left(1 + \frac{V}{\varepsilon}\right)$, we get 2.9 eV for Ge and 3.67 eV for Si
- However, the thresholds in E_{nr} are stated as 40 eV for Ge and 78 eV for Si.

• Using $E_{ee} = E_{nr} \frac{\left(1 + \frac{VY(E_{nr})}{\varepsilon}\right)}{\left(1 + \frac{V}{\varepsilon}\right)}$ to convert from E_{ee} to E_{nr} , I get the energy resolution to be 5.5 eV for Ge and 3.7 eV for Si

Looking at the background spectrums

Looking at the background spectrums

- I think the mismatch is coming from the fact that the "true" spectrum is only shifted in the x-axis, not adjusted in the y-axis, which is a rate/energy /kgd unit.
- The "data" plot is adjusted in both the x-axis and the y-axis.
- Looked at regular histograms

Looking at the background spectrums

