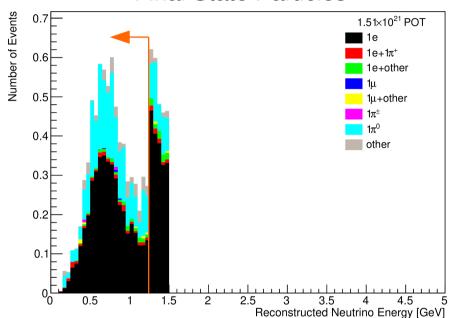


v_a CCQE/CC1π⁺ Selection Studies

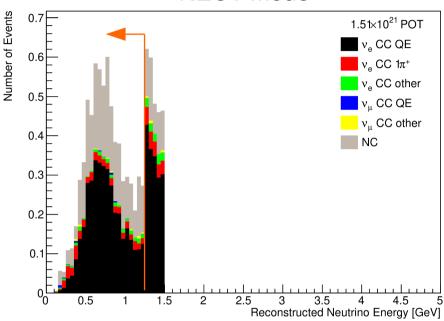
Trevor Towstego v_e CCQE/CC1 π^+ Meeting October 24, 2019

E_{rec} Cut

- Investigated potential of changing E_{rec} cut from 1.5 GeV to 1.25 GeV
 - to be consistent with existing samples
- See how many oscillated v_e CC events would be lost if making this change

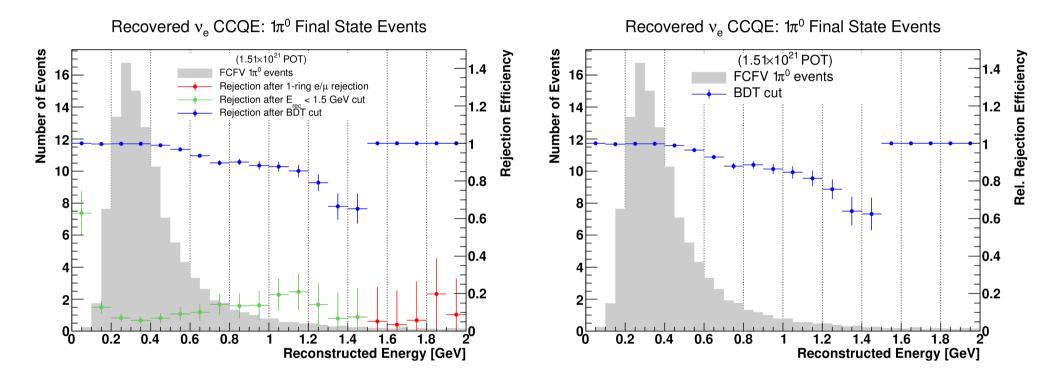


$$FOM = \frac{N_{oscv_eCC}}{\sqrt{(N_{oscv_eCC} + N_{other})}}$$


- E_{rec} distribution of final sample is shown
 - with E_{rec} < 1.5 GeV
- Arrow indicates cut at E_{rec} < 1.25
 GeV
- Although purity is better with more aggressive cut, FOM is reduced due to large efficiency loss

E _{rec} cut comparison							
1.5 GeV 1.25 GeV							
osc. v_e CC	4.133	3.311					
other	5.723	3.920					
purity	0.419	0.458					
FOM	1.317	1.231					

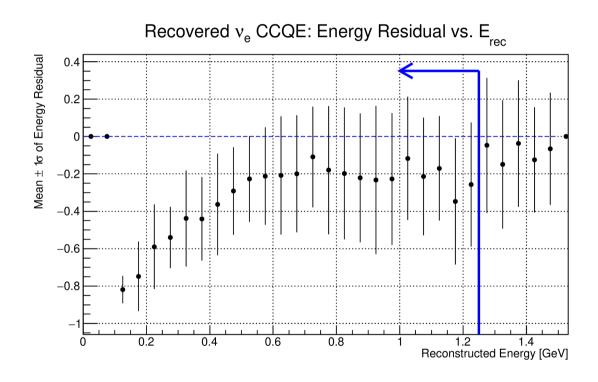
NEUT mode



- E_{rec} distribution of final sample by final state particles (left) and NEUT mode (right)
- Arrows indicate cut at E_{rec} < 1.25 GeV

Comments from T2K-SK (2 weeks ago)

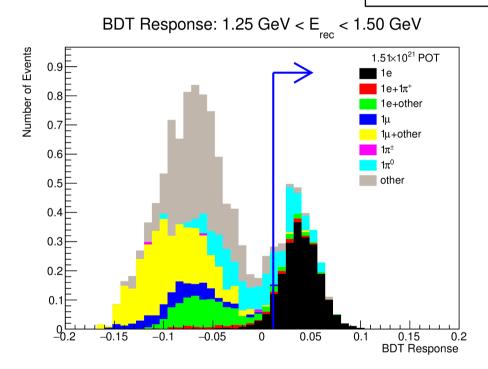
- At this point, I was leaning towards leaving E_{rec} cut at 1.5 GeV
- Some concerns from T2K-SK
 - E_{rec} plot looks strange
 - Systematics of events in that region?
 - Presumably these would have been rejected for a reason

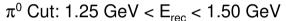

 π^{o} rejection efficiency vs. E_{rec}

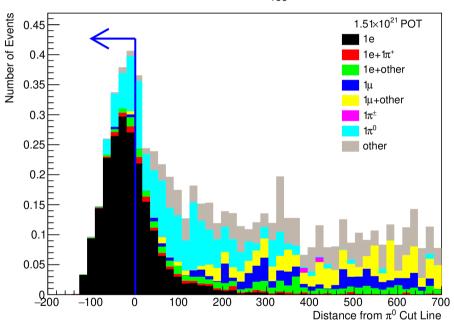
• Rejection efficiency drops off in 1.25 GeV $< E_{rec} < 1.5$ GeV region

Recovered v_e CCQE

energy residual vs. E_{rec}

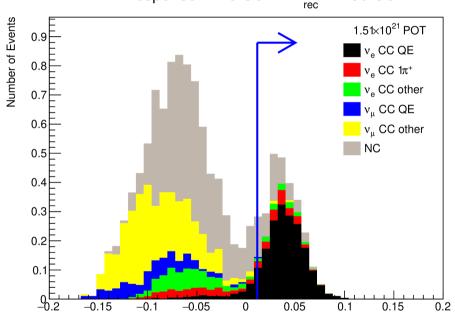

• Energy resolution actually seems better in 1.25 GeV < E_{rec} < 1.5 GeV region


Comments from Hiro

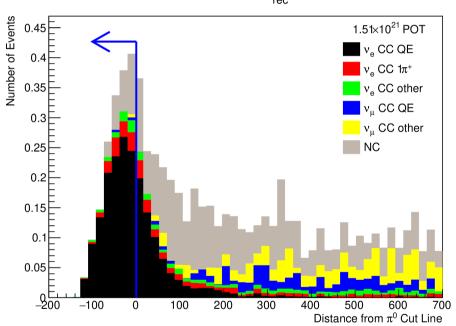

• Would be interesting to see how BDT distribution compares to $\pi^{_0}$ cut from existing $\nu_{_e}$ CCQE selection in 1.25 GeV < E_{rec} < 1.5 GeV region

BDT vs. π^{o} cut in 1.25 < E_{rec} < 1.5 GeV region

Final State Particles

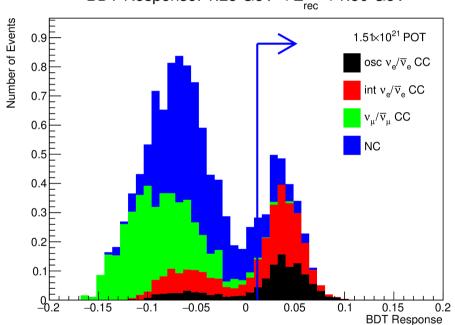


• These plots compare the BDT response (left) to the nominal π^0 cut in the 1.25 GeV – 1.5 GeV E_{rec} region

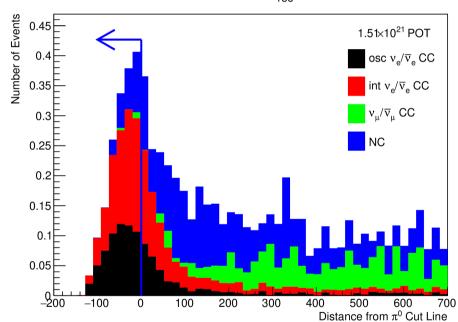

BDT vs. π^{0} cut in 1.25 < E_{rec} < 1.5 GeV region

NEUT mode

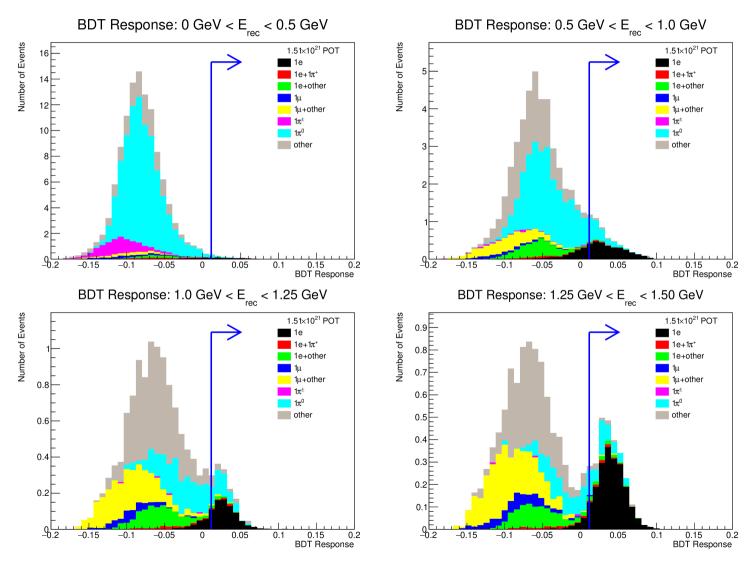
 π^0 Cut: 1.25 GeV < E_{rec} < 1.50 GeV


• These plots compare the BDT response (left) to the nominal π^0 cut in the 1.25 GeV – 1.5 GeV E_{rec} region

BDT Response


BDT vs. π^{o} cut in 1.25 < E_{rec} < 1.5 GeV region

neutrino type

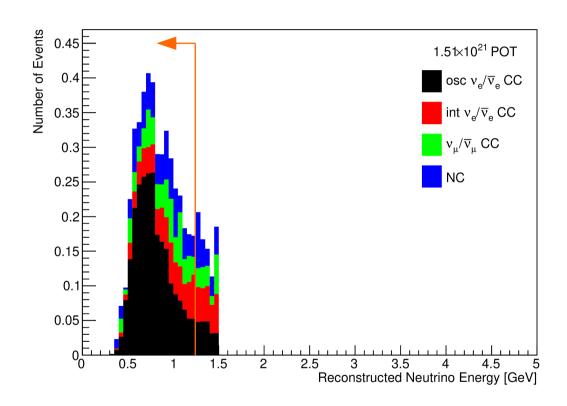


 π^0 Cut: 1.25 GeV < E_{rec} < 1.50 GeV

• These plots compare the BDT response (left) to the nominal π^0 cut in the 1.25 GeV – 1.5 GeV E_{rec} region

BDT distribution in all E_{rec} regions

Observations

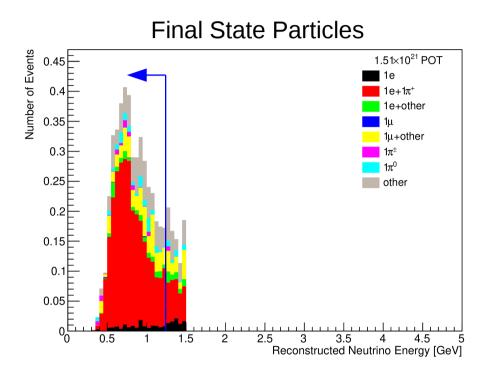

- E_{rec} dependence in π^0 rejection is observed in 1.25 GeV-1.5 GeV region
- Energy resolution seems to improve in this E_{rec} region
- Likely safer to change E_{rec} cut to 1.25 GeV
 - However, may continue working for now with 1.5 GeV cut
 - Would be straightforward to change cut in the future as systematic studies progress

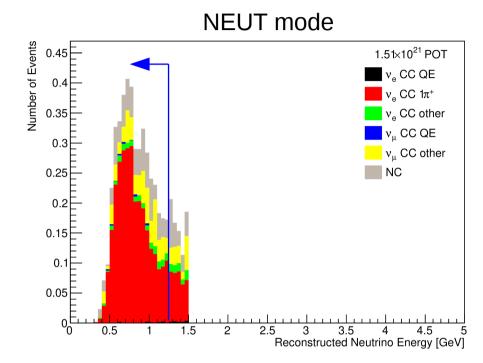
Comments from T2K-SK (this week)

- E_{rec} cut of 1.25 GeV was originally used because of an observed data/MC discrepancy in the $\pi^{_0}$ cut distribution for higher E_{rec} regions
- Discussion evolved into a suggestion that I look at replacing the existing ν_e CCQE sample with a single BDT, rather than having two independent samples
 - I am currently working on this
 - Preliminary results look promising
 - Unfortunately don't have plots to show yet

Backup

2-ring ν_e CC1 π^+




$$FOM = \frac{N_{oscv_eCC}}{\sqrt{(N_{oscv_eCC} + N_{other})}}$$

- E_{rec} distribution of final sample is shown
 - with E_{rec} < 1.5 GeV
- Arrow indicates cut at E_{rec}
 1.25 GeV
- More aggressive E_{rec} cut may benefit selection

E _{rec} cut comparison							
1.5 GeV 1.25 GeV							
osc. v_e CC	2.635	2.426					
other	2.643	2.026					
purity	0.499	0.545					
FOM	1.147	1.150					

2-ring ν_e CC1 π^+

- E_{rec} distribution of final sample by final state particles (left) and NEUT mode (right)
- Arrows indicate cut at $E_{rec} < 1.25 \text{ GeV}$

Detailed Cutflow: Recovered v_e CCQE

NEUT Mode

1.51×10 ²¹ POT	v_e/\overline{v}_e CC QE	$\nu_{_{e}}^{}/\overline{\nu}_{_{e}}^{}$ CC $1\pi^{_{\pm}}$	v_e / \overline{v}_e CC other	$v_{\mu}/\overline{v}_{\mu}$ CC QE	$v_{\mu}/\overline{v}_{\mu}$ CC other	NC
All	74.53	36.95	27.36	377.57	706.00	991.26
OD Hits < 16	67.90	32.69	23.43	274.99	465.00	348.72
E _{vis} > 30 MeV	67.67	32.54	23.39	268.99	462.18	309.86
Fiducial Volume	58.57	28.19	20.42	249.58	428.98	268.88
Not 1Re/µ	15.79	16.71	18.54	34.61	378.41	242.67
0 decay e	15.21	7.69	10.93	10.28	58.45	175.76
E _{rec} < 1.5 GeV	7.72	4.78	4.28	4.86	12.64	156.02
BDT cut	5.57	0.61	0.27	0.03	0.05	3.34

Final State

1.51×10 ²¹ POT	1 e	1e+1π⁺	1e+other	1μ	1µ+other	1π±	1π0	other
All	89.05	17.68	32.36	420.74	587.88	63.65	146.50	855.79
OD Hits < 16	81.26	16.24	28.18	306.17	388.44	46.41	134.76	211.28
E _{vis} > 30 MeV	80.90	16.19	28.16	301.28	387.78	39.36	134.17	176.80
Fiducial Volume	70.05	14.00	24.61	279.92	360.47	35.25	116.35	153.96
Not 1Re/µ	17.77	9.86	24.20	36.60	342.01	21.48	112.61	142.19
0 decay e	16.05	2.84	15.26	7.28	55.85	10.24	107.58	63.19
E _{rec} < 1.5 GeV	8.24	1.90	6.97	3.73	12.14	10.21	103.60	43.51
BDT cut	6.12	0.21	0.21	0.01	0.04	0.02	2.75	0.49

Detailed Cutflow: 2-ring v_e CC1 π^+

NEUT Mode

1.51×10 ²¹ POT	v_e / \overline{v}_e CC QE	$\nu_{_{ m e}}^{}/\overline{\nu}_{_{ m e}}^{}$ CC 1 π^{\pm}	v_e / \overline{v}_e CC other	$v_{\mu}/\overline{v}_{\mu}$ CC QE	$v_{\mu}/\overline{v}_{\mu}$ CC other	NC
All	74.53	36.95	27.36	377.57	706.00	991.26
OD Hits < 16	67.90	32.69	23.43	274.99	465.00	348.72
E _{vis} > 30 MeV	67.67	32.54	23.39	268.99	462.18	309.86
Fiducial Volume	61.18	29.32	21.38	237.01	422.48	281.06
Not 1Re/µ	16.69	17.37	19.41	32.27	376.28	253.88
0 decay e	0.57	8.94	5.90	18.42	154.61	51.76
E _{rec} < 1.5 GeV	0.14	5.11	1.07	7.10	40.34	32.01
BDT cut	0.04	3.32	0.23	0.02	0.81	0.98

Final State

1.51×10 ²¹ POT	1e	1e+1π⁺	1e+other	1μ	1µ+other	1π±	1π0	other
All	89.05	17.68	32.36	420.74	587.88	63.65	146.50	855.79
OD Hits < 16	81.26	16.24	28.18	306.17	388.44	46.41	134.76	211.28
E _{vis} > 30 MeV	80.90	16.19	28.16	301.28	387.78	39.36	134.17	176.80
Fiducial Volume	73.12	14.50	25.79	265.06	355.83	35.10	122.17	160.85
Not 1Re/µ	18.77	10.19	25.34	33.75	340.02	21.40	117.59	148.85
0 decay e	1.66	6.98	6.93	11.55	147.80	8.76	4.86	51.67
E _{rec} < 1.5 GeV	0.53	4.45	1.46	5.14	38.96	8.44	3.40	23.38
BDT cut	0.22	3.08	0.21	0.01	0.69	0.08	0.20	0.92