Progress Update

Trevor Towstego UofT Neutrino/DM Meeting May 23, 2018

Trying to understand efficiency loss

- Why is there such a large efficiency loss of 2-ring $\nu_{\rm e}$ CC1 π events when the 2-ring cut is made?

cut	ν _e /ν¯ CC1π ^{+/-}	v ၙ/៴៑ CCQE	vၙ/៴ᢆ CCother	ν _μ /ν _μ CC1π ^{+/-}	ν _μ /ν _μ CCQE	ν _μ /ν _μ CCother	NC 1π⁺	NC 1π ⁻	NC 1πº	ΝC Νπ	NC 0π
FCFV	26.16	104.60	20.40	90.54	216.44	136.26	20.11	15.48	90.77	40.46	25.95
2 rings	10.48	7.44	4.37	33.85	20.95	16.93	5.48	4.20	68.85	6.91	8.33
eπ-like	7.74	1.82	0.42	1.42	0.72	5.22	1.12	0.84	1.92	1.49	0.93

These are events with one electron and one charged pion (above Cherenkov threshold + 30 MeV/c momentum), counted using the VCWORK stack where the pion must be flagged "to chase"

fqmrnring[0]: true 2-ring $v_e CC1\pi$

Lots of 2-ring v_e CC1 π events being reconstructed as 1-ring or 3-ring events

NEUT mode: true 2-ring $v_e CC1\pi$

Thoughts on fqmrnring[0]

Figure 50 in TN319 showing number of true rings vs. number of reconstructed rings

- fiTQun's 2-ring cut designed to diagonalize this matrix
 - No specific interaction mode taken into account
 - Just so happens that diagonalization of this matrix works poorly for $\nu_{\rm e}~CC1\pi$

What are 2-ring $v_e^{}$ CC1 π events being reconstructed as?

1-ring reco PID: true 2-ring $v_e CC1\pi$

18-05-23

What are 2-ring $v_e^{}$ CC1 π events being reconstructed as?

2-ring reco PID: true 2-ring $v_e CC1\pi$

What are 2-ring $v_e^{}$ CC1 π events being reconstructed as?

3-ring reco PID: true 2-ring $v_e CC1\pi$

Likelihood Ratios

- Look at likelihood ratios before 2-ring cut
 - Use previous plots to guide which ratios should be looked at
 - Haven't looked at 3-ring likelihoods yet

UofT Neutrino/DM Meeting

UofT Neutrino/DM Meeting

UofT Neutrino/DM Meeting

UofT Neutrino/DM Meeting

UofT Neutrino/DM Meeting

UofT Neutrino/DM Meeting

Where to go from here?

- Manually experiment with likelihood ratio cuts
 - see how easily efficiency can be improved
- Put likelihood ratios into BDT using TMVA
 - need to figure out way to reduce memory usage