
IO Library
April 25 2017

1

CDMS_EVENT

eventSizeBytes
triggerID
triggerType
global_timestamp

vector<TRIGPRIMITIVE> primitives

vector<DETECTORS> detectors

DETECTOR

towerNum
numPhononChannels
numChargeChannels
detectorID
detectorType
dcrcIndex
dcrc0_serial
dcrc0_version
dcrc1_serial
dcrc1_version

readoutStatus
seriesTime
seriesTimefrac

vector<CHANNEL> channels

Data Structures

CHANNEL

prepulseLength
onpulseLength
postpulseLength
pretriggerOffset
samplerateHigh
samplerateLow
channelType
channelNum
*data

TRIGPRIMITIVE

trigStatus
piledUp
triggerID
numPrimsEvent

detectorID
unixtime
rt_time
rt_timefrac
scaler
num_triggers
trigger_time
trigger_timefrac
amplitude
triggerword
maskparis
DCRC

2

Notable Changes to Data Structure

• All prim information is held within a single structure (currently in
CDMS DAQ, it is held in a class with 2 sub-structures).

• 0x4 READOUT_REQUEST structure no longer exists. Information is
merged with DETECTOR structure.

• CHANNEL structure now holds metadata such as channel number and
channel type
• Currently in CDMS DAQ, there exists separate phonon and charge sub-

structures

3

pack_primitive Function

Inputs:

DWORD *emptybuffer
TRIGPRIMITIVE *prim_ptr

CDMS_EVENT *ev_ptr

Packs:

+

+

+ one of

+

+

4

pack_primitiveList Function

Inputs:

DWORD *emptybuffer
vector<TRIGPRIMITIVE>

*primlist
CDMS_EVENT *ev_ptr

Packs:

+ looped over all prims

+

+

+

+

5

pack_channel Function

Inputs:

DWORD *emptybuffer
CHANNEL *ch_ptr

CDMS_EVENT *ev_ptr

Packs:

+

+

+

+

+ one of

+

6

pack_detector Function

Inputs:

DWORD *emptybuffer
DETECTOR *det_ptr

CDMS_EVENT *ev_ptr

Packs:

+

+

+

+ looped over all channels

+

7

pack_event Function

Inputs:

DWORD *emptybuffer
CDMS_EVENT *ev_ptr

Packs:

+ looped over all prims, looped over all detectors

+

8

pack_eventList Function

Inputs:

DWORD *emptybuffer
vector<CDMS_EVENT>

*evlist

Packs:

+ looped over all prims, looped over all detectors

+

lo
o

p
ed

 o
ver

9

Issue 1: TRIGPRIMITIVE and multiple events

• Having a CDMS_EVENT structure suggests that all the information
within that structure corresponds to the same single event.

• However currently in the CDMS DAQ, the TRIGPRIM_BANK_DATA
class holds prim information from multiple events.

• As it stands now in the IO Library, using pack_primlist or pack_event
will pack prim information from multiple events, using the same
decision making as CDMS DAQ:
• if(i == 0 || (i>0 && primlist[i].triggerID != primlist[i-1].triggerID){ …}

10

Issue 1: TRIGPRIMITIVE and multiple events

• Option 1: don’t have a CDMS_EVENT data structure, keeping
TRIGPRIMITIVE and DETECTOR structures separate.
• Now it doesn’t matter if TRIGPRIMITIVE has info from multiple events
• User will have some event builder to combine banks together

• Option 2: It is expected that the user will populate the
vector<TRIGPRIMITIVE> with prims only from one event.
• Now CDMS_EVENT structure has information corresponding to only 1 event
• This will require changes to CDMS DAQ

• Option 3: IO Library only packs prim data that matches triggerID with
CDMS_EVENT.
• Eg. If CDMS_EVENT metadata has triggerID = x, then IOLibrary will only pack prim

data that has triggerID = x.
• More work for Library, but would means less changes to CDMS DAQ.
• CDMS_EVENT structure will still have prim info from multiple event (information will

be duplicated to some extent?)
11

Issue 2: CDMS_EVENT 0x5 data

• The CDMS_EVENT structure holds the 0x5 data as its members:

• Every packing function will pack the 0x5 data.

• This means that all functions must have CDMS_EVENT *ev_ptr
pointer to the event structure, in order to pack this info.

• Thus user must have CDMS_EVENT structure (instead of only creating
the substructures).

12

Issue 2: CDMS_EVENT 0x5 data

• Option 1: Leave it as is – this is fine.

• Option 2: The substructure will also hold the 0x5 data, so if you want
to pack a substructure, you can still pack 0x5 data without needing to
point to a CDMS_EVENT structure.
• Eg. Each channel will hold this 0x5 data. So to pack channel, all you need is

pack_channel(DWORD *emtpybuffer, CHANNEL *ch_ptr){…}

• This is already done at the detector level for triggerID, but not the channel
level. What about the other 0x5 data?

• Is this possible? Would it be a lot of data duplication?

13

Issue 3: Header values

• The 0x9, 0x5, 0x7, 0x3, and 0x8 headers are packed for all packing
functions.

• Should the value of the headers reflect the actual event information,
or the information that is being packed?

• For example, if I was using pack_primitiveList (so no detector
information included), but the event has 5 detectors (hypothetically)
would the 0x3 (numDetectors) read:
• 0, since there is no detector information being packed

• 5, since there are 5 detectors with this event. However, the actual detector
information has not been packed.

14

Issue 4: pack_channel and detector metadata

• If I wanted to pack data for a single channel, should the packed data
include the detector metadata or not?

• I.e. If I call pack_channel(…){…}, which packs the info for just one
channel, should it include:

along with:

15

16

