THOUGHTS ON MPMT AND PMTS

HK SCHEDULE

- From conveners+ meeting
- Tank and support structure
 - Design of tank occurs in FY2018-2019, contract in FY
 - PMT structure purchase occurs in FY2024, installation in FY2025. When is design fixed?
- 20" PMT
 - production to start in FY2019
 - installation start late FY 2025? after PMT structure is installed?

NuPRISM SCHEDULE

	2016	2017	2018	2019	2020	2021	2022
First Prototypes							
Design of facilities							
Facility Construction							
mPMT design							
NuPRISM Tank Design							
mPMT Production							
NuPRISM Tank construction							
NuPRISM installation							

Figure 1: Overall Timetable

- mPMT design moving rapidly now with TRIUMF support
 - hopefully we may have a mechanical design by end of this calendar year?
 - electronics development cannot start yet (funding, resources, needed).
 - Hopefully completed by 2019.
- Budget for ~500 mPMTs for NuPRISM
 - production capacity may be 10-20/week
 - ~1 year production time
 - depends on production of other modules (PINGU, KM3NET) in same facilities
 - we may expect to finish in 2020

MERGING HK +NUPRISM mPMT R&D

- mPMT is well-motivated for NuPRISM
 - Situation is not so clear for HK, more study is needed
 - can design effort go in parallel?
- NuPRISM maximum depth is 50 m
 - already challenging for "standard" acrylic manufacturers
 - new, more specialized means may be needed for HK (80 m)
- Support structure is certainly different
 - for NuPRISM, structure is dedicated to mPMT
 - for HK, starting point is 20"ID, 8" ID system
 - need to design a hybrid support structure
- Other differences:
 - electronics? cabling? power requirements?
 - failure tolerance . . .

CONSIDERATIONS

- With 40% coverage, 20" PMTs are nearly maximally packed on the wall
- Naively, each have πx(25 cm)² ~ 2000 cm² effective area

nuPRISM mPMT: Effective Area

- 50 cm diameter mPMT with 19 ID 3" PMTs
 - Effective area is ~1000 cm²
- Geometrically, replacing one 20" PMT with a mPMT of the same diameter reduces photo coverage by 1/2.
- Motivation for mPMTs in HK should be something other than photocathode coverage
 - even if cost/area is less, geometry may not allow equivalent photocathode coverage
 - (unless more detailed geometrical packing study is done).

HK mPMT STUDIES

- Main potential advantages of mPMT
- Time resolution of 3" PMTs
 - vertex resolution for low energy events may be improved
- Granularity
 - ring identification may be improved (counting and particle ID)
- Directionality:
 - new frontier . . .
 - effective dark noise reduction in conjunction with vertex?
 - background suppression by considering only forward PMTs ?
- mPMT software model hopefully finished now (?)
 - detailed study will still take time (and probably still some debugging)
 - can simpler studies be done?

TIMING RESOLUTION

- Can we consider simulating improved timing resolution directly?
 - i.e. simulate 20" B&L PMT with 1.3 TTS of 3" PMT as a starting point
 - are we limited by chromatic dispersion?
 - If promising:
 - reduce PMT coverage by 75%? 50%?
 - simulate half PMTs with 2.7 ns TTS, half with 1.3 ns TTS?
- Perform physics studies:
 - vertex resolution for low E?
 - solar, relic neutrino, etc.
 - p→K+v?

GRANLUARITY

- NuPRISM studies show clear gain in performance vs. towel for 3" PMT
 - uniform array, not in mPMT
- Can we extrapolate to HK?
 - Need to match performance of 20" B&L in NuPRISM with 20" B&L in HK
 - "ToWall" for sample of particles with different
 - this probably means a study as a function of momentum and ToWall
 - Gain in performance near wall in NuPRISM can be translated to HK
 - background reduction

0.8

400

200

600

800

Momentum [MeV/c]

1000

DIRECTIONALITY:

- Probably needs actual mPMT implementation in MC
- For high energy, incorporation into a reconstruction algorithm is probably needed
 - qualitatively new information that may be difficult to incorporate into fiTQun
 - this is probably the most challenging aspect
- For low energy:
 - rejection of light produced from PMT-related backgrounds (e.g. photon emission, etc.)
 - produce low energy tracks from PMT surface
 - see if light can be rejected by PMT directionality or if aperture occludes light

COMBINING mPMT R&D

- My guess is that NuPRISM and HK mPMTs would end up being quite similar (maybe mechanically identical)
 - Can we quickly determine:
 - do we need thicker wall, thicker cover?
 - are materials compatible with low energy physics?
 - electronics? requirements for triggering?
 - are power consumption requirements ?
 - HK mPMTs will need more extensive testing for deep underwater deployment and implosion
- Can we also quickly come up with a support structure concept for both mPMTs and 20" B&L PMTs?
 - each position can accommodate either an mPMT or 20" PMT with a common mounting mechanism?
 - details of where PMTs/mPMTs go can then be decided later.
- The physics studies are where we may diverge, since NuPRISM has a much more focussed program.

IN CANADA:

Figure 1: Overall Timetable

- We have ongoing request for ~500 mPMT modules to be produced ~2020 for NuPRISM
- If this is successful (outcome in May) we can:
 - adapt design for HK. Engage in testing in 2019 alongside NuPRISM?
 - make another request in 2019 (outcome in May 2021)
 - O(1k) modules may be possible in a "reasonable" request
 - if second request is unsuccessful, move NuPRISM mPMTs to HK?

GENERAL ISSUE:

- Clearly, more countries need to participate if we want a substantial contribution (O(10k) modules)
- Can other countries contribute mPMT if design is effectively done by Canada?
 - After conceptual design and initial requirements, can we break up the design into work packages to allow more definite and concrete design contributions from other countries?
- Can we parallelize component sourcing
 - locally produce as many components as possible (vessel, cover, internal structure, etc.)
 - can even PMTs come from different vendors?
 - start from common design
 - make specification and qualify vendors and sources.