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M P M T:

• Essential features: 

• Vessel providing water-proofing and protection against pressure 

• in additional to photosensors, readout electronics, monitoring, calibration devices can be 
placed in the vessel 

• Array of small (~3”) photosensors rather than one large photosensor 

• if using one or a few large photosensors (>8”) than we are back to “DOM” 

• Possible applications of the mPMT in HK have introduced a few times over ~2 years 

• intermediate detector/TITUS (G. de Rosa) and NuPRISM 

• within HK (T. Feusels) 



M P M Ts  I N  H K
• There has been significant technical progress in advancing various aspects of a 

HK mPMT (Canada, Italy, Japan, Poland) 

• Acrylic vessel: 

• optical, stress, testing 

• Electronics 

• 3” PMTs 

• optical gel 

• Overall design: 

• Adapting KM3NET design 

• “bottom-up” design for NuPRISM

enormous effort and progress, but it is not my purpose to review it here . . .



C U R R E N T  E F F O RT
• Simulation studies and mPMT design optimization 

• Acrylic studies 

• Vessel design 

• Cooling system design 

• PMT read-out optimization 

• HV system 

• Optical gel studies 

• Final design mPMT prototype construction 
- Final design mPMT test
- PMT support studies
- PMT selection



P R O G R E S S  A N D  L A C K  T H E R E O F
• We have made a lot of progress understanding how to build an mPMT 

• also costing, components, assembly 

• it is already understood as an attractive way to increase photo coverage in HK with broad participation. 

• But it is still not clear from a physics stand point why we want mPMTs in HK 

• why is this advantageous relative to 20” PMTs? 

• are there complementary capabilities/features? 

• Still, we have managed to identify where we may profit: 

• increased granularity in imaging Č rings 

• better timing resolution (due to improved Hamamatsu and HZC 3” PMTs) 

• directional information 

• integration of ID/OD (potentially less “dead” space) 

• opportunity to add calibration devices in mPMT vessels 

• containment of radon emanation within vessel 

• However, we have not produced anything resembling a “bottom line”  for how HK would profit 
from the mPMT concept. 

• advantages of integration mean that the design considerations are more complicated . . .  

• organizationally, it presents challenges as what were separate efforts must now be considered at once: 

• photosensor, readout electronics, support structure, calibration, (DAQ, software)



W H Y  N O T ?
• Depends on which point: 

• Information content: 

• increased granularity in imaging Č rings 

• better timing resolution 

• now making good progress in NuPRISM with detailed simulation/reconstruction 

• directional information 

• qualitatively new capability the we do not know how to exploit yet, both in reconstruction and calibration 

• Overall HK design: 

• integration of ID/OD (potentially less “dead” space) 

• this requires us to go beyond just the mPMT design to the global detector design. 

• how do ID/OD, 20” PMTs, and mPMTs coexist within HK? 

• Calibration: 

• opportunity to add calibration devices in mPMT vessels 
• depends on global calibration strategy 

• Containment: 

• containment of radon emanation within vessel 

• needs testing/measurements  

• needs detailed design with this goal in mind? (won’t say more about this for now).



O V E R A L L  P H O T O D E T E C T I O N
• Photodetection has been the primary metric to evaluate 

photosensor coverage 

• in baseline design, with 40% coverage, 20” PMTs are nearly 
maximally packed on the wall 

• Naively, each have π x (25 cm)2 ~ 2000 cm2 effective area
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FIG. 37. Arrangement of ID and OD photosensors. The ID photosensors (open circles) are facing inward,

and the OD photosensors (blue circles) are facing outward. See also Figure 38.

is 40%, equivalent to that of SK-IV. Since the new 50 cm � PMTs (Hamamatsu R12860) developed

for Hyper-K have about twice higher single photon detection e�ciency than that of the Super-K

PMTs (Hamamatsu R3600), the overall photon detection e�ciency in the ID is almost double that

of SK-IV. A standard fiducial volume in each tank, defined as the region inside a surface drawn

1.5 m from the ID wall, is 0.187 million tons, The Hyper-K total fiducial volume, 0.187⇥2 = 0.374

million tons, is about 17 times the fiducial volume of Super-K.

The outer segment monitored by outward-facing ⇠ 6, 700 20 cm � photosensors per tank is

called the Outer Detector (OD), which acts mainly as a veto for entering particles such as cosmic

ray muons. Another important task of the OD is to determine whether a particular event occuring

within the ID is fully contained in the ID or not. The OD water thickness is 1m in the barrel

region and 2 m in the top and bottom regions. The number density of the OD photosensors is

about (1 photosensor)/(3 m2), one sixth of that of the ID photosensors, making the photocathode

coverage of about 1%.

The photosensors for the ID and OD are mounted on stainless steel supporting framework. The
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After Fix: Full mPMT

● With no reflectors, effective area at 0 degrees increase from 670cm2 to 
790cm2

● This is consistent with what we'd expect from the single 3'' PMT simulations

• Consider 50 cm diameter mPMT with 19 ID 3” PMTs 

• Effective area is ~1000 cm
2 

• Geometrically, replacing one 20” PMT with mPMT of the same 
diameter reduces photocoverage by 1/2. 

• in addition to the dead space between the modules there 
is dead space between the PMTs within the module.

• Motivation for mPMTs in HK must be something other than “raw” photdetection 
• even if cost/area is less, equivalent photocoverage to 20” PMT is difficult to achieve geometrically 

without a radical (innovative) departure in the concept 

• (radical but not innovative: make hexagonal modules or PMTs that can improve packing)



T I M I N G  R E S O L U T I O N
• new Hamamatsu 3”PMTs are showing excellent timing resolution (1.3 ns FWHM) 

• promoting developments also at HZC 

• How can we study the impact of this? 

• Again, we can directly simulate the configuration and return reconstruction, etc. 

• may take some time? 

• Can we decouple granularity from time resolution? 

• simulate 20” B&L PMT with 1.3 TTS of 3” PMT as a starting point 

• we can easily address issue such as chromatic dispersion effects. 

• is it easier to return reconstruction in this case?

Timing limitation due to chromaticity?
• 300nm (n=1.349) — 525nm (n=1.334): 
- Δn/n=1.1% => Δt=0.05 nsec/m (full width)
- Δt=1.3 nsec (TTS of the new 3” PMT) for 26m path 
• TTS dominates up to ~20m of light path for the new 3” PMT
• UV side of light are absorbed for longer light path, shrinking Δt

- TTS dominates for 20” box-and-line PMT’s
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• Perform physics studies: 
• vertex resolution for low E? 

• solar,  relic neutrino 
• p→K+ν? 

• applications where darknoise, 
etc. are critical 
• e.g. n-tagging



G R A N L U A R I T Y
• NuPRISM studies show clear gain in vs. toWall for 3” PMT  

• N.B.: uniform array (not mPMTs) 

• How can we study this in HK? 

• do it directly (simulate in HK, tune reconstruction, study 
performance) 

• may take some time? 

• Bootstrap NuPRISM studies to understand implications for HK? 

• small d/toWall are where we expect improvement due to 
granularity 

• if d, toWall are << tank diameter, we may expect that NuPRISM, 
HK perform similarly, assuming the same mPMT configuration. 

• if we control toWall, momentum, and angle-to-wall, we may be 
able to translate NuPRISM performance in this region to HK. 

Reconstruction	efficiency

• (#	events	reconstructed	in	ID)/(#	FCFV	events)
– In	this	study,
“reconstructed	in	ID”	means	
fq1rpcflg[0][1]==0	for	e,	
fq1rpcflg[0][2]==0	for	μ,	and	
fqpi0pcflg[0]==0	for	π0

particle	gun.
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D I R E C T I O N A L I T Y:
• The most complicated since it is a qualitatively new capability 

• Probably needs actual mPMT implementation in MC 

• For high energy, incorporation into a reconstruction algorithm is probably 
needed to study this 

• qualitatively new information that may be difficult to incorporate into fiTQun 

• this is probably the most challenging aspect 

• For low energy: 

• rejection of light produced from PMT-related backgrounds (e.g. photon emission, 
etc.) 

• produce low energy tracks from PMT surface  

• see if light can be rejected by PMT directionality or if aperture occludes light 

• Calibration: 

• decoupling angular/position information may allow position-dependent water 
parameters to be (more easily) determined 

• this needs to couple to a more general calibration strategy



I N T E G R AT I O N  O F  I D / O D

• Potential savings in dead/OD region to increase ID is tied to design of PMT support structure 

• If we are to profit from this, we have to immediately consider how PMTs and mPMTs coexist in 
the same detector 

• Can we consider a “universal” interface that allows either an mPMT and PMT to be mounted 
in a given location? 

• this would then define mechanical requirements for both the 20” and mPMT assemblies 

• it will also define “height” requirements on mPMT to result in net reduction of dead region.
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FIG. 37. Arrangement of ID and OD photosensors. The ID photosensors (open circles) are facing inward,

and the OD photosensors (blue circles) are facing outward. See also Figure 38.
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O B S E R VAT I O N S  ( I ) :
• We have made a lot of progress over the last two years understanding existing mPMT 

designs and issues 

• much of the initial discussion was focussed on cost/photodetection. 

• Photodetection with mPMT relative to 20” PMT is limited due to simple geometry 

• we must make a case based on something else 

• We can make a technical schedule for mPMT development 

• this is relevant, but a physics design study must proceed (precede to some extent) in parallel 

• what performance metrics are relevant for the mPMT? 

• Whatever the design, it will be a substantial production endeavour 

• sourcing/testing of components 

• assembly of modules and subsequent QA/testing 

• difficult/non-standard processes such as optical gel formation and application 

• how to manage supply chain of incoming components and outgoing modules? 

• one feature we are looking to is “global” participation in the production . . . . . 

• additional hurdles in managing distributed production 

• can we manage this in a reasonable time and with high reliability?



O B S E R VAT I O N S  I I
• The phase space of “mPMT” designs is enormous. 

• but we know where we are seeking advantage in physics 

• what granularity is desired? (3” is okay? or can we use larger PMTs?) 

• what timing resolution is needed? (impacts timing resolution of individual PMTs, 
electronics requirements) 

• how much directional information is needed (impacts light collector design, PMT 
direction) 

• how to minimize dead space (impacts “height” of design and support structure 
design) 

• what calibration devices do we need to incorporate? 

• what level of Rn containment is needed for real physics impact? 

• Can we converge on a few (2?) concepts, study, and optimize? 

• Can we profit as much as possible in the short from: 

• NuPRISM studies and “simplified/shortcut” studies  

• to inform whether we are benefitting from the mPMT concept and to guide the 
optimization.


