H. A. TANAKA (TORONTO/IPP/TRIUMF)

A PERSONAL PERSPECTIVE

MPMT:

- Essential features:
 - Vessel providing water-proofing and protection against pressure
 - in additional to photosensors, readout electronics, monitoring, calibration devices can be placed in the vessel
 - Array of small (~3") photosensors rather than one large photosensor
 - if using one or a few large photosensors (>8") than we are back to "DOM"
- Possible applications of the mPMT in HK have introduced a few times over \sim 2 years
 - intermediate detector/TITUS (G. de Rosa) and NuPRISM
 - within HK (T. Feusels)

MPMTs IN HK

- There has been significant technical progress in advancing various aspects of a HK mPMT (Canada, Italy, Japan, Poland)
- Acrylic vessel:
 - optical, stress, testing
- Electronics
- 3" PMTs
- optical gel
- Overall design:
 - Adapting KM3NET design
 - "bottom-up" design for NuPRIS

enormous effort and progress, but it is not my purpose to review it here . . .

CURRENT EFFORT

- Simulation studies and mPMT design optimization
- Acrylic studies
- Vessel design
- Cooling system design
- PMT read-out optimization
- HV system
- Optical gel studies
- Final design mPMT prototype construction
- Final design mPMT test
- PMT support studies
- PMT selection

PROGRESS AND LACK THEREOF

- We have made a lot of progress understanding how to build an mPMT
 - also costing, components, assembly
 - it is already understood as an attractive way to increase photo coverage in HK with broad participation.
- But it is still not clear from a physics stand point why we want mPMTs in HK
 - why is this advantageous relative to 20" PMTs?
 - are there complementary capabilities/features?
- Still, we have managed to identify where we **may** profit:
 - increased granularity in imaging Č rings
 - better timing resolution (due to improved Hamamatsu and HZC 3" PMTs)
 - directional information
 - integration of ID/OD (potentially less "dead" space)
 - opportunity to add calibration devices in mPMT vessels
 - containment of radon emanation within vessel
- However, we have not produced anything resembling a "bottom line" for how HK would profit from the mPMT concept.
 - advantages of integration mean that the design considerations are more complicated . . .
 - organizationally, it presents challenges as what were separate efforts must now be considered at once:
 - photosensor, readout electronics, support structure, calibration, (DAQ, software)

WHY NOT?

- Depends on which point:
 - Information content:
 - increased granularity in imaging Č rings
 - better timing resolution
 - now making good progress in NuPRISM with detailed simulation/reconstruction
 - directional information
 - qualitatively new capability the we do not know how to exploit yet, both in reconstruction and calibration
 - Overall HK design:
 - integration of ID/OD (potentially less "dead" space)
 - this requires us to go beyond just the mPMT design to the global detector design.
 - how do ID/OD, 20" PMTs, and mPMTs coexist within HK?
 - Calibration:
 - opportunity to add calibration devices in mPMT vessels
 - depends on global calibration strategy
 - Containment:
 - containment of radon emanation within vessel
 - needs testing/measurements
 - needs detailed design with this goal in mind? (won't say more about this for now).

OVERALL PHOTODETECTION

- Photodetection has been the primary metric to evaluate photosensor coverage
- in baseline design, with 40% coverage, 20" PMTs are nearly maximally packed on the wall
- Naively, each have $\pi x (25 \text{ cm})^2 \sim 2000 \text{ cm}^2$ effective area

- Consider 50 cm diameter mPMT with 19 ID 3" PMTs
 - Effective area is ~1000 cm
- Geometrically, replacing one 20" PMT with mPMT of the same diameter reduces photocoverage by 1/2.
 - in addition to the dead space between the modules there is dead space between the PMTs within the module.

• Motivation for mPMTs in HK must be something other than "raw" photdetection

- even if cost/area is less, equivalent photocoverage to 20" PMT is difficult to achieve geometrically without a radical (innovative) departure in the concept
- (radical but not innovative: make hexagonal modules or PMTs that can improve packing)

TIMING RESOLUTION

- new Hamamatsu 3"PMTs are showing excellent timing resolution (1.3 ns FWHM)
 - promoting developments also at HZC
- How can we study the impact of this?
 - Again, we can directly simulate the configuration and return reconstruction, etc.
 - may take some time?
 - Can we decouple granularity from time resolution?
 - simulate 20" B&L PMT with 1.3 TTS of 3" PMT as a starting point
 - we can easily address issue such as chromatic dispersion effects.
 - is it easier to return reconstruction in this case?
- Perform physics studies:
 - vertex resolution for low E?
 - solar, relic neutrino
 - p→K+ν?
 - applications where darknoise, etc. are critical
 - e.g. n-tagging

GRANLUARITY

- NuPRISM studies show clear gain in vs. *toWall* for 3" PMT
 - N.B.: uniform array (not mPMTs)
- How can we study this in HK?
 - do it directly (simulate in HK, tune reconstruction, study performance)
 - may take some time?
 - Bootstrap NuPRISM studies to understand implications for HK?
 - small d/toWall are where we expect improvement due to granularity
 - if d, toWall are << tank diameter, we may expect that NuPRISM, HK perform similarly, assuming the same mPMT configuration.
 - if we control *toWall*, momentum, and *angle-to-wall*, we may be able to translate NuPRISM performance in this region to HK.

DIRECTIONALITY:

- The most complicated since it is a qualitatively new capability
 - Probably needs actual mPMT implementation in MC
- For high energy, incorporation into a reconstruction algorithm is probably needed to study this
 - qualitatively new information that may be difficult to incorporate into fiTQun
 - this is probably the most challenging aspect
- For low energy:
 - rejection of light produced from PMT-related backgrounds (e.g. photon emission, etc.)
 - produce low energy tracks from PMT surface
 - see if light can be rejected by PMT directionality or if aperture occludes light
- Calibration:
 - decoupling angular/position information may allow position-dependent water parameters to be (more easily) determined
 - this needs to couple to a more general calibration strategy

INTEGRATION OF ID/OD

- Potential savings in dead/OD region to increase ID is tied to design of PMT support structure
- If we are to profit from this, we have to immediately consider how PMTs and mPMTs coexist in the same detector
- Can we consider a "universal" interface that allows either an mPMT and PMT to be mounted in a given location?
 - this would then define mechanical requirements for both the 20" and mPMT assemblies
 - it will also define "height" requirements on mPMT to result in net reduction of dead region.

OBSERVATIONS (I):

- We have made a lot of progress over the last two years understanding existing mPMT designs and issues
 - much of the initial discussion was focussed on cost/photodetection.
- Photodetection with mPMT relative to 20" PMT is limited due to simple geometry
 - we must make a case based on something else
- We can make a technical schedule for mPMT development
 - this is relevant, but a physics design study must proceed (precede to some extent) in parallel
 - what performance metrics are relevant for the mPMT?
- Whatever the design, it will be a substantial production endeavour
 - sourcing/testing of components
 - assembly of modules and subsequent QA/testing
 - difficult/non-standard processes such as optical gel formation and application
 - how to manage supply chain of incoming components and outgoing modules?
 - one feature we are looking to is "global" participation in the production
 - additional hurdles in managing distributed production
 - can we manage this in a reasonable time and with high reliability?

OBSERVATIONS II

- The phase space of "mPMT" designs is enormous.
 - but we know where we are seeking advantage in physics
 - what granularity is desired? (3" is okay? or can we use larger PMTs?)
 - what timing resolution is needed? (impacts timing resolution of individual PMTs, electronics requirements)
 - how much directional information is needed (impacts light collector design, PMT direction)
 - how to minimize dead space (impacts "height" of design and support structure design)
 - what calibration devices do we need to incorporate?
 - what level of Rn containment is needed for real physics impact?
 - Can we converge on a few (2?) concepts, study, and optimize?
 - Can we profit as much as possible in the short from:
 - NuPRISM studies and "simplified/shortcut" studies
 - to inform whether we are benefitting from the mPMT concept and to guide the optimization.