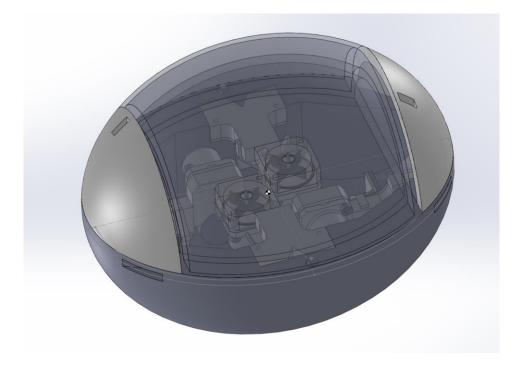
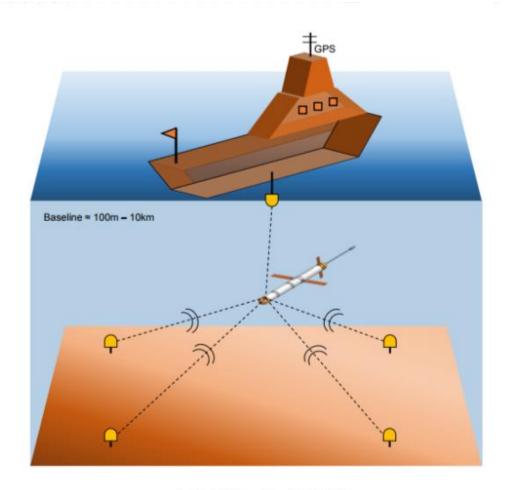

Update


Alev Orfi Aug 17th, 2017

Electrical Housing

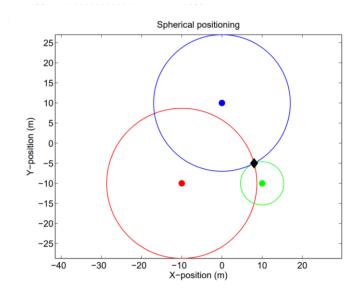
- Size dependent on components
- Waterproofing through FDM and polyurethane combination

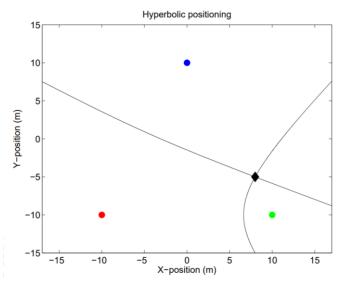
Power System


- Two independent system to minimize interference
 - Motor system (12V)
 - Sensor system
- Over-current protection circuit
- Voltage regulation
- Kill switch

Acoustic Positioning

- Classical long baseline
 - An AUV transducer interrogates each of the transducers in the array individually
- Accuracy of the system depends on significantly on baseline length and interrogation frequency


	Frequency Range	Maximum range	Typical relative, static accuracy*
Low frequency (LF)	8kHz to 16kHz	∽ 10km	2m to 5m
Medium frequency (MF)	18kHz to 36kHz	2km to 3.5km	0.25m to 1m
High frequency (HF)	30kHz to 60kHz	$1,500 { m m}$	0.15 m to 0.25 m
Extra high frequency (EHF)	50kHz to 110kHz	< 1,000m	< 0.05m
Very high frequency (VHF)	200kHz to 300kHz	< 100m	< 0.01m


Table 2.2: LBL positioning accuracy versus frequency

(a) Classical LBL

Spherical and Hyperbolic Positioning

Spherical

- Based on the time of arrival (TOA) of signals from each transducers
- These are converted to a ranges using a sound-velocity profile
- The AUV position is at the intersection of the range spheres

Hyperbolic

- Uses the time difference of arrival (TDOA) between two different transducer
- These time differences are converted into a hyperboloid on which the receiver can lie
- Spherical can be more accurate as you can have redundancy

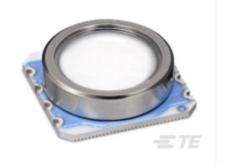
Spherical Localization Techniques

- Static localization methods
 - Least squares estimate
 - Minimizes the weighted sum of the squared range errors
- Dynamic position estimation
 - Kalman filter
 - Uses a vehicle model to add in its dynamics
 - Extended Kalman filter
 - Similar to Kalman filter but doesn't linearize the model
- Smoothing
 - Uses information from measurements taken over a time interval to allow for more accurate linearization

Acoustic Hardware

- Transducer
 - Sends an interrogation signal at one frequency and receives a response at another frequency
- Transponder
 - When it receives a signal at a certain frequency it will send a response at another frequency
- Beacon/Pinger
 - Continuously sends out signal at particular frequency
- Hydrophone
 - Listening device which receives response from transponder/beacon
- Responder
 - Is able to produce a signal which externally signaled

Hardware Systems


- Classical LBL
 - Requires a transducer on the vehicle and transponders which will return the signal
- One way travel time
 - Responders send out signals to hydrophones on the vehicle
 - Requires all nodes to carry synchronized clock hardware

Input/Output System

- Connects sensors and actuators to the computer
- Sensors without direct USB connection have their own microcontroller
- Motor system
 - Each motor requires an electronic speed controller (ESC) which allow PWM control
- Hydrophone system
 - Depends on hardware

Depth Sensor

- MS5803-14BA
- 1.8 to 3.6 V
- High resolution
- Data transferred to a microcontroller via I2C protocol then transferred to the computer

TECHNICAL DATA

Sensor Performances (V _{DD} = 3 V)						
Pressure	Min	Тур	Max	Unit		
Range	0		14	bar		
ADC	24			bit		
Resolution (1)	1 / 0.6 / 0.4 / 0.3 / 0.2			mbar		
Accuracy 0°C to +40°C, 0 to 6 bar (2)	-20		+20	mbar		
Accuracy -40°C to + 85°C 0 to 6 bar (2)	-40		+40	mbar		
Response time	0.5 /	1.1 / 2.1 8.22	/ 4.1 /	ms		
Long term stability		-20		mbar/yr		
Temperature	Min	Тур	Max	Unit		
Range	-40		+85	°C		
Resolution		<0.01		°C		
Accuracy	-0.8		+0.8	°C		
Notes: (1) Oversampling Ratio: 256 / 512 / 1024 / 2048 / 4096 (2) With autozero at one pressure point						

Next Steps

- Acoustic hardware
- IMU
- Microcontrollers
- Computer
- Look into scattering/interference issues