Progress of BdNMC work

Shaghayegh Atashi June 15, 2017

Outline

• Some info on BdNMC production and scattering channels

• TTree that stores all the information in events.dat

• A bit more on elastic NC-like nucleon scattering

Production channel: pi-minus_capture

- In the description of the BdNMC 3.1.5 (newer version), Patrick says the piminus capture signal channel is added ... "Piminus scattering simulates the isotropic emission of dark photons from the pi-minus absorption process P+pi minus -> N* -> N + \gamma. This production channel can be invoked with production_channel piminus_capture."
 - I'm assuming N= proton or neutron as usual
- According to the comments in the sample BdNMC parameter card,
 piminus_capture is a baryonic production channel.
 - Problem: BdNMC gives a negative number of V's, then produces a segmentation fault with this production channel
 - But: we can ignore this production channel for now (dark photons are emitted isotropically and SK is far)

Production channel: parton_production

- Corresponds to the dark matter production process p+N \rightarrow V* \rightarrow χ/χ †
- I want to see what these events look like in events.dat
- I get a seg fault when I run BdNMC with the parton_production mode:

"Parameter read successfully

Setting up *distribution default* for channel parton_production

./bin/BDNMC: line 26: 6912 Segmentation fault ./build/main \$RUN_DIRECTORY/\$arg"

• BdNMC has trouble with the default distribution for parton_production. I'm running this production channel without specifying a production distribution (specifying a production channel is "optional", but it seems like I need a production distribution)

Paper talks about the production channel distributions:

- "parton_V" for parton_production production channel
- But: "this requires externally generated data for V-production at the parton level"
- I'll have to find this data

More production channels

- Appendix says these are also possible production channels: omega (omega in omega_decay), rho (in rho_decay) but when I run it with omega_decay, I get "No DM production expected"
 - -> (maybe there is DM production for some model parameters, but I don't know what)
- I get a seg fault when I run it with rho_decay

=> these production channels are probably not yet implemented in BdNMC

Signal channel: inelastic NC π^0 -like nucleon scattering

(for all production channels) it's possible that the produced χ undergoes inelastic NC π^0 -like nucleon scattering:

- a situation "where there is sufficient momentum transfer to produce a neutral pion which subsequently decays producing a two-photon signature (also one of the main background for nu_mu → nu_e appearance)
- "Incoherent NC π^0 "; pion emerges via the production of a Δ (1232) resonance in the following process

$$\chi + N \rightarrow \chi + \Delta$$

$$\Delta \rightarrow N + \pi^0$$

An example event:

event 1								
pion	-0.0836232	0.00222933	4.75508	4.75774				
V	-0.0424542	0.00297251	2.61895	2.6212				
DM	-0.0152323	-0.00434501	2.41499	2.41506				
Recoil DM	0.151803	-0.0496552	2.05259	2.05882				
Delta [—]	-0.167035	0.0453101	0.362395	1.2958	-3.13666	-0.894731	497.297	1.65885e-06
Neutron	-0.144091	0.0478925	0.048097	0.95297				
pi0	-0.0229438	-0.00258233	0.314298	0.342834				
, I <u> </u>								

June 15, 2017 S.Atashi 6

Inelastic NC π^0 -like nucleon scattering cont.

Some things to think about:

- Somewhere else in the paper 1 , it says that the pi0 \rightarrow V \rightarrow pair of DM particles decay process happens on such a short scale that the pi0 and V don't travel far, so we can assume this process happens in the target and the DM particles propagate from the target to the detector.
- It seems like it's possible that the pi0 from the inelastic scattering inside the detector decays (in flight) to a V which decays to 2 DM particles all inside the detector, so the DM particles scatter inside the detector. Then the DM particles can undergo scattering in the detector.
 - One scenario: the DM particles can undergo inelastic NC pi0 -like scattering again and produce another pi0.
 - The process can repeat and produce a cascade of DM particles that scatter inside the detector?
 - \rightarrow This is too unlikely to happen; pi0 \rightarrow 2 gamma's is much more probable

June 15, 2017 S.Atashi

^{1- &}quot;Light dark matter in neutrino beams: production modelling and scattering signatures at MiniooNE, T2K, and SHiP" by Patrick de Niverville et al.

Leptophobic model of DM

• Discussion with Hiro: I'll focus on the dark photon model for now; can consider the baryonic vector mediator model separately later

Putting BdNMC's output information into a TTree:

• Reminder: BdNMC outputs a data file containing info about the particles involved in the interactions. For example, some events from a data file outputted by BdNMC is shown here. The format is:

particle name px		ру	pz	Е	X	У	Z	z t
Run 14950529 event 1 eta V	0.259824 0.267948	-0.198728 -0.0747792	3.08678 2.75542	3.15205 2.79816				
DM proton	-0.00796544 -0.342382	0.00861999 -0.192742	1.8036 0.132485	1.80364 1.02581	-2.1939	2.37418	496.759	1.65705e-06
endevent 1								
event 2								
eta	-0.512015	-0.241737	2.33848	2.46764				
V	-0.447128	-0.203878	2.29495	2.38081				
DM	0.00205929	-0.0015099	0.924071	0.924088				
proton	-0.297628	-0.242418	0.186791	1.03082	1.10585	-0.810828	496.231	1.65528e-06
endevent 2								

• x,y,z, and t are only shown for the signal particle (particle that the DM scatters off)

Ttree that stores all the information in events.dat

- Branches that are arrays of variable length
- The branches:

event_num: event number

n: number of particles in each interaction; varies for each event

eg n=3 for event 1

n=4 for event 2 in the events.dat file below

Ttree that stores all the information in events.dat

- The other branches (they are all arrays of size n):
- Nth part: an integer that stores the order of the particle in the interaction (eg 1 for the first particle in the interaction, 2 for the second, etc)
 - → useful later when I want to know which particles participated in each interaction for a given event
- The particle type (a Char_t)
- An integer corresponding to the particle type (using PDG numbering convention)
 - Useful when putting the scattered particles into skdetsim
- px: x momentum (GeV)
- py: y momentum (GeV)
- Pz: z momentum (GeV)
- E: energy (GeV)
- x: x position of interaction (m)
- y: y position of interaction (m)
- z: z position of interaction (m)
- time: time of interaction (since production of dark matter particles, in seconds)

TTree cont.

- Want to fill position and time branches when the particle is a signal particle (eg the neutrons below)
- Run into issued if I try to fill the branches when position/time is not give for the particle (eg for eta and DM below)

event 4								, , , , , , , , , , , , , , , , , , ,
eta	-0.293065	0.34329	0.469601	0.851124				
V	-0.309001	0.180154	0.415015	0.678362				
DM	0.000520242	0.000693986	0.303537	0.30358				
neutron	0.179911	-0.149193	0.206807	0.988812	0.854665	1.14009	498.657	1.66357e-06
DM	0.0520242	0.000893986	0.4303537	0.230358				
neutron	0.479911	-0.249193	0.4206807	0.198881	0.3854665	1.514009	198.657	2.66357e-06

endevent 4

→ I have separate branches that only get filled for the signal particles

TTree cont.

- · Read the file once to determine # particles in each event
 - Also determine #scattering particles (by looking at the size of the line) and store them in a vector
- The branches:

n:#particles in each event

· Nth part

particle type (Char_t)

Int corresponding to particle type

· px (GeV)

· py (GeV)

 \cdot pz (GeV)

· E (GeV)

-These are arrays of size n n_scatt: # scattering particles in each event

· Nth part (for scattering particles)

particle type (Char_t) (for scattering particles)

· Int corresponding to particle type (for scattering particles)

· px (for scattering particles) (GeV)

py (for scattering particles) (GeV)

· pz (for scattering particles) (GeV)

• E (for scattering particles) (GeV)

· X (in m, for scattering particles)

· Y (in m, for scattering particles)

· Z (in m, for scattering particles)

• Time (in s, for scattering particles)

These are arrays of size n_scatt

These branches only get filled for signal particles (using the size of the line)

TTree cont.

Integer-based encoding of particles

- I've created 2 vectors (elements are in correspondence)
 - one vector stores particle names
 - the other stores the corresponding integer
- For each particle name (in events.dat):
 - loop through all entries in the names vector until the names match (let's say at index i), the corresponding integer is = integers_vector[i]

pion_inelastic and pion_inelastic_charged signal channels

· Reminder:

pion_inelastic (NCpi0-like inelastic scattering):

$$\chi + N \rightarrow \chi + \Delta$$

$$\Delta \rightarrow N + \pi^0$$

• Eg:

event 1								
pion	-0.0836232	0.00222933	4.75508	4.75774				
V	-0.0424542	0.00297251	2.61895	2.6212				
DM	-0.0152323	-0.00434501	2.41499	2.41506				
Recoil DM	0.151803	-0.0496552	2.05259	2.05882				
Delta	-0.167035	0.0453101	0.362395	1.2958	-3.13666	-0.894731	497.297	1.65885e-06
Neutron	-0.144091	0.0478925	0.048097	0.95297				
pi0	-0.0229438	-0.00258233	0.314298	0.342834				
event 12 pion	-0.0296693	-0.0510476	1.8827	1.88846				
v	-0.0490881	-0.030156	1.64648	1.65052				
DM	-0.00990177	-0.00416781	1.3567	1.35678				
Recoil DM	0.172118	0.273436	0.874492	0.932324				
Delta	-0.18202	-0.277604	0.482204	1.36402	-3.6425	-1.53319	499.078	1.66484e-06
Proton	-0.0131495	-0.0815221	0.21368	0.965832				
ni -	-0.16887	-0.196082	0.268524	0.398184				

- The nucleon and pion after delta are its decay products
- I determine the charge of delta using its decay products and store it in my branches
- Same thing with the Pion Inelastic Charged signal channel (next slide)

pion_inelastic and pion_inelastic_charged signal channels

• pion_inelastic signal ch: also includes Δ decay to charged pion states

• Eg:

event 2								
pion	-0.0485683	-0.131048	3.98058	3.98532				
V	-0.0142828	-0.0707355	2.78356	2.78629				
DM	0.00722674	0.000436931	1.7374	1.73744				
Recoil DM	-0.193723	0.114637	1.3465	1.36522				
Delta	0.20095	-0.1142	0.3909	1.31303	2.07526	0.125471	498.919	1.66426e-0
Proton	0.364715	-0.187031	0.27344	1.05977				
pi0	-0.163765	0.0728302	0.11746	0.253256				
event 6	0.150006	0.0107367	2.5450	2 55162				
pion	-0.150926	0.0187367	3.5458	3.55163				
V	-0.136918	-0.0105639	3.09401	3.09867				
DM	-0.0050204	0.00114232	1.18229	1.18235				
Recoil DM	-0.162419	0.0577219	0.806967	0.825232				
Delta	0.157399	-0.0565796	0.375328	1.29872	-2.11355	0.480909	497.737	1.66035e-0
Neutron	0.142721	-0.122292	0.516997	1.08876				
pi+	0.0146779	0.0657127	-0.14167	0.209961				

→ Determine charge of delta from its decay products

More on elastic NC-like nucleon scattering

Eg: running BdNMC with a MiniBooNE- like experiment with

epsilon = 1e-3dark matter mass= 0.01 GeV dark_photon_mass = 0.1 GeV alpha D = 0.1

s type part

→ a lot more proton scattering

More on elastic NC- like nucleon scattering

Elastic NC-like nucleon scattering:

The paper says for incoherent scattering, the leading term of the cross section is

$$\frac{d\sigma_{\chi N}}{dE_{\chi}} = 4\pi k_{V,B}^{(1)} Q_N^2 G_D(Q^2) \frac{2m_N E E_{\chi} - m_{\chi}^2 (E - E_{\chi})}{(E^2 - m_{\chi}^2)(m_V^2) + Q^2)^2} + \cdots$$
(13)

where again Q_N is the nucleon electric charge (or unity in the baryonic case), E_{χ} the energy of the recoiling DM particle, $Q^2 = 2m_N(E - E_{\chi})$ is the momentum transfer, and $G_D(Q^2)$ is the Sachs form-factor, $G_D(Q^2) = 1/(1 + Q^2/M^2)^2$ with $M = 0.843 \,\text{GeV}$. Further dipole form factor terms, which are generally subleading (for protons), are suppressed to simplify the presentation, although they are included in the final results (see [2, 43] for full details). The resulting nuclear scattering cross section will be discussed later in Section 5.

$$k_{V,B}^{(n)} = \begin{cases} \epsilon^2 \alpha (\alpha')^n & \text{for } U(1)' \\ \alpha_B^{n+1} & \text{for } U(1)_B \end{cases}$$

g' is the U(1)' gauge coupling $\alpha' \equiv g'^2/(4\pi)$

- > leading term couples to electric charge so more proton scatterings than neutron scatterings
- Leading term is dependent on mass of chi and dark photon.

Elastic NC-like nucleon scattering cont.

$$\frac{d\sigma_{\chi N}}{dE_{\chi}} = 4\pi k_{V,B}^{(1)} Q_N^2 G_D(Q^2) \frac{2m_N E E_{\chi} - m_{\chi}^2 (E - E_{\chi})}{(E^2 - m_{\chi}^2)(m_V^2 + Q^2)^2} + \cdots$$
(13)

where again Q_N is the nucleon electric charge (or unity in the baryonic case), E_{χ} the energy of the recoiling DM particle, $Q^2 = 2m_N(E - E_{\chi})$ is the momentum transfer, and $G_D(Q^2)$ is the Sachs form-factor, $G_D(Q^2) = 1/(1 + Q^2/M^2)^2$ with $M = 0.843 \,\text{GeV}$. Further dipole form factor terms, which are generally subleading (for protons), are suppressed to simplify the presentation, although they are included in the final results (see [2, 43] for full details). The resulting nuclear scattering cross section will be discussed later in Section 5.

 Ran the same parameter card except with NCE_nucleon_baryonic: thought the asymmetry would disappear ...

→ Will look at other terms in the scattering cross section to get a better idea

Next steps

- Run my code (event.dat → TTree) with different BdNMC parameters and study the histograms
- make cuts on the data that enters the histograms by calling MakeClass() on the tree (eg make seperate histograms for scattered protons vs neutrons etc)

Backup

pion_inelastic and pion_inelastic_charged signal channels

Reminder:

pion inelastic (NCpi0-like inelastic scattering):

$$\chi + N \rightarrow \chi + \Delta$$

$$\Delta \rightarrow N + \pi^0$$

- pion_inelastic signal ch: also includes Δ decay to charged pion states
 - occurs ~ 1/3 of the time, increasing the event rate over Pion Inelastic by 50%.
- Charged pion decays:

$$\begin{array}{c} \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \\ \pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu} \end{array} \right\} \ \, \text{Branching ratio: 0.999877} \qquad \qquad \begin{array}{c} \pi^{+} \rightarrow e^{+} + \nu_{e} \\ \pi^{-} \rightarrow e^{-} + \overline{\nu}_{e} \end{array} \right\} \ \, \text{Branching ratio: 0.000123}$$

$$\frac{\pi^{-} \to \pi^{0} + e^{-} + \overline{\nu}_{e}}{\pi^{+} \to \pi^{0} + e^{+} + \nu_{e}}$$
Branching ratio: ~ 10⁻⁸

$$\begin{array}{c}
\pi^{+} \rightarrow e^{+} + \nu_{e} \\
\pi^{-} \rightarrow e^{-} + \overline{\nu}_{e}
\end{array}$$
 Branching ratio: 0.000123

Next steps cont.

What is this?

```
#This invokes the bremsstrahlung production channel. This works, but may be #unreliable around the rho resonance. The zmin/zmax values seem reasonable #for MiniBooNE energies. ptmax could be as large as the proton mass, but #probably would not change signal much. production_channel V_decay production_distribution proton_brem ptmax 0.2 zmin 0.3 zmax 0.7
```

Title title title title title title title

text