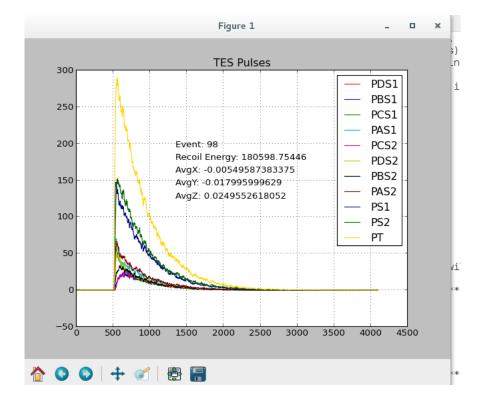
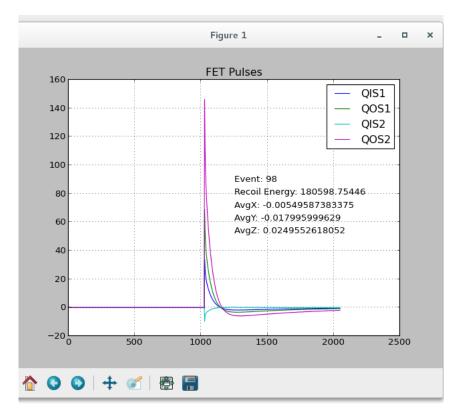
Weekly Meeting

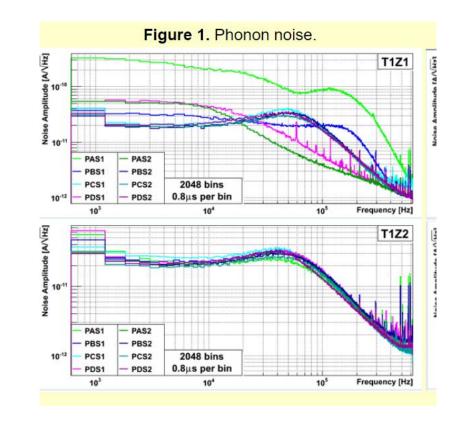

September 13 2017

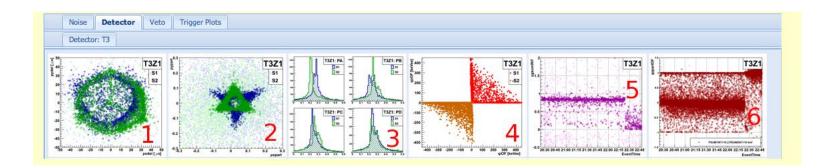

- Pushed a version the new code to feature/midaio branch
- I haven't gotten my questions answered by Jorge yet but it shouldn't affect the ability for the code to run properly (it follows closely what root writer does)
- cdms_iolibrary also packages and unpackages "DMCblock" for DMC specific information.
- It seems to work okay, but need to wait for midasio part to come in.

- Pushed a version the new code to feature/midaio branch
- I haven't gotten my questions answered by Jorge yet but it shouldn't affect the ability for the code to run properly (it follows closely what root writer does)
- cdms_iolibrary also packages and unpackages "DMCblock" for DMC specific information.
- It seems to work okay, but need to wait for midasio part to come in.

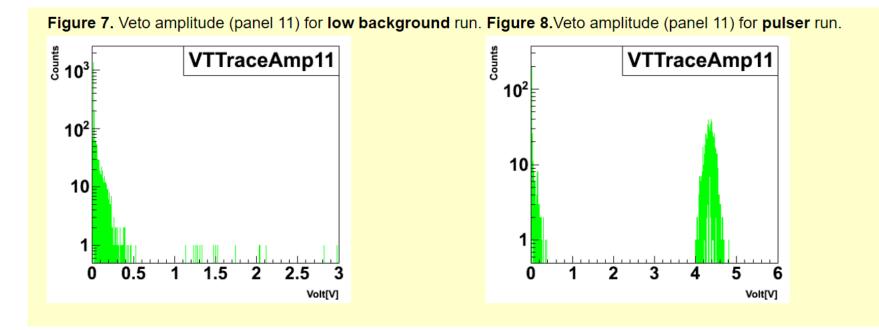
															tact:				_																	_
DMC DATA FORMAT DRAFT V1: Created August 18 '17. Last updated: August 18 '17 bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																																				
	bits			_	_	28	27	26	25	24	23	_	_	-		-	_	7 16	6	15	14	13	1	2 1	1 1	0	_	-	_	_		_		2	1	0
				0	x1		format version											total n events																		
				0	x2													IM s	er	ies	nui	mb	er													
				SIM event ID																																
				SIM recoil energy high																																
				SIM recoil energy low																																
				SIM avg x high																																
																SI	IM a	vg x	lo	w																
				SIM avg y high																																
				SIM avg y low																																
ants				SIM avg z high																																
N events																S	IM a	vg z	lo	w																
×				0	х3												n	dete	ect	tors	in	eve	ent													
			TotalTES - high																																	
				TotalTES - low																																
																То	otal	ET -	hi	gh																
																Т	otal	ET -	lo	w																
														C	deteo	cto	or na	me ((e.	.g. T	1Z2	2)														
				0	x4												n o	hanı	ne	els ir	de	ete	cto	r												
		ъ Б											l n	um	n																					
		×												C	hanı	nel	l na	ne (e	e.(g. P/	۹S1	L)														
				0	x5															end																

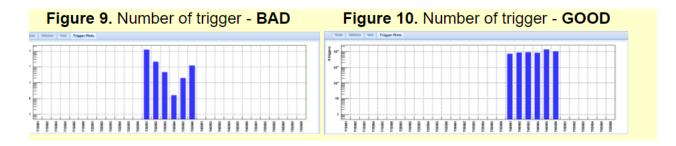
- I want to do a qualitative comparison between pulses from random events from DMCPreBats memory and after it does through CDMS IO/MIDAS IO
 - After packaging, unpackage data and look at pulses.
- Quantitative comparison will be hard, given that I force all the pulses data to be unsigned int variables, which will change how data looks.

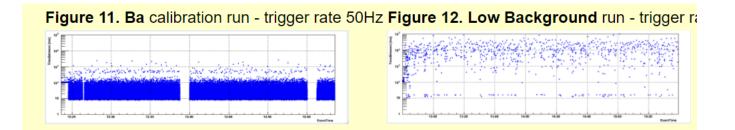



These are from DMCPreBats memory – the pulses should look (qualitatively) the same after going through IO Libs

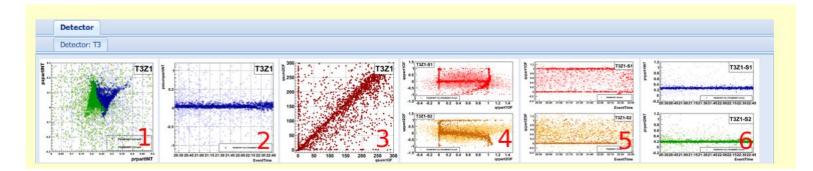
- Data doesn't seem to be read out properly need to find out why.
- Unpackaged data has the right number of channels, but there is a problem with how the data is accessed.
- I determine between FET and TES pulses by looking at event.detectors[0].channels[i].channelType
 - I think the problem lies within this variable for some reason.


• Level 1: Noise – record random noise triggers, look at noise spectra for phonon and charge channels.


- Level 1: Detector plots
 - Delay plots: phonon X delay versus phonon Y delay. Phonon signal should reach the nearest phonon sensor before the farthest one
 - Partition plot: describes energy fractions more of the energy should be deposited on to the closer sensors
 - Phonon Channel raw pulse heights
 - Charge channel amplitude outer versus inner electrode on both detectors sides: check whether the charge channels are working or not
 - Yield and charge Z partition versus time: monitor stability of variables look for degradation of variables (detector not working properly)



• Level 1: VETO: monitors the largest adc value found in the entire veto trace



• Level 1: Trigger: number of triggers in each detector, total trigger rate

- Level 2 Plots:
 - Phonon partition plot (phonon Z versus R partition for both sides of detector) describes energy fractions amongst channels
 - Phonon Z partition versus time Monitors stability and changes of variable. Degradation means detector is not working properly
 - Sum of charge energy on outer versus inner electrodes from thickness of 45 degree population can roughly estimate charge reolution
 - Charge R versus Z partition same as phonon but for charge channels
 - Charge R partition versus time
 - Phonon R partition versus time

Photoelectric cross sections in G4

- G4 lists two processes involving photoelectric effect:
 - G4PolarizedPhotoElectricEffect
 - G4PhotoElectricEffect
- Found equations they use to calculate cross section of photoelectric cross sections:

$$\sigma(Z, E_{\gamma}) = \frac{a(Z, E_{\gamma})}{E_{\gamma}} + \frac{b(Z, E_{\gamma})}{E_{\gamma}^2} + \frac{c(Z, E_{\gamma})}{E_{\gamma}^3} + \frac{d(Z, E_{\gamma})}{E_{\gamma}^4}$$

ing the least-squares method, a separate fit of each of the coefficients a, b, c, d to the experimental data was performed in several energy intervals [2]. As a rule, the boundaries of these ervals were equal to the corresponding photoabsorption edges.

a given material the mean free path, λ , for a photon to interact via the photoelectric effect is given by :

$$\lambda(E_{\gamma}) = \left(\sum_{i} n_{ati} \cdot \sigma(Z_i, E_{\gamma})\right)^{-1} \tag{6}$$

Photoelectric cross sections in G4

SUMMARY OF THE EXPERIMENTAL TOTAL CROSS SECTION DATA USED IN THE VALIDATION ANALYSIS

Atomic Number	Element	Energy range (keV)	Sample size	References
1	Н	0.0136 - 0.020	27	[102]-[104]
2	He	0.025 - 0.277	320	[105]-[112]
3	Li	0.046 - 0.400	93	[113]-[116]
7	N	0.015 - 0.4	73	[117], [118]
8	0	0.013 - 0.28	215	[103], [119]-[121]
10	Ne	0.022 - 2.952	448	[108], [110]-[112], [117], [122]
11	Na	0.046 - 0.246	17	[123]
13	Al	145.4	1	[124]
17	Cl	0.016 - 0.078	25	[125]
18	Ar	0.016 - 6	487	[105], [110]-[112], [117], [126]-[130]
19	K	0.004 - 0.005	12	[131]
22	Ti	59.54	1	[132]
23	v	59.54	1	[132]
24	Cr	59.54	1	[132]
25	Mn	59.54	1	[132]
26	Fe	0.008 - 59.54	25	[132]-[134]
27	Co	59.54	1	[132]
28	Ni	1.487 - 59.54	17	[132], [133]
29	Cu	59.54 - 661.6	9	[124], [132], [135]–[138]
30	Zn	59.54	1	[132]
33	As	59.54	1	[132]
34	Se	59.54	1	[132]
36	Kr	0.015 - 1.626	357	[105], [110], [112], [139], [140]
37	Rb	0.004 - 0.010	4	[141]
38	Sr	59.54	1	[132]
39	Y	279.2 - 661.6	2	[142]
40	Zr	59.54 - 661.6	7	[124], [135]–[137], [143]
41	Nb	59.54	2	[143]
42	Mo	59.54 - 661.6	7	[132], [138], [143]
43	Tc	59.54	1	[143]
44	Ru	59.54	1	[143]
45	Rh	59.54	1	[143]
46	Pd	59.54	1	[143]
47	Ag	1.487 - 661.6	13	[124], [?], [135]–[137], [143]–[146]
48	Cd	59.54	2	[132], [143]
49	In	59.54	2	[143]
50	Sn	1 - 661.6	31	[124], [133], [135]–[137], [143], [144], [146]
51	Sb	59.54	1	[143]
52	Te	59.54	2	[143]
54	Xe	0.013 - 6	657	[110], [122], [128], [130], [147]
55	Cs	0.004 - 59.54	14	[132], [141], [148]
57	La	59.54	1	[149]
58	Ce	59.54 - 661.6	6	[142], [149]–[152]
50	Dr	50.54 661.6	2	[150] [152]

No Si, no Ge, need to keep digging