Probing the Nuclear Effect with a $CC0\pi + Np$ Differential Cross Section Measurement

<u>Jiae Kim</u>, Tom Feusels (University of British Columbia) Hirohisa Tanaka (University of Toronto)

April 13 2017

Overview

- We do not know the incoming neutrino energy. Instead we do only see the final topology to reconstruct it. We have claimed the topology of $CC0\pi$ as :
 - One muon and no pion in the final state
 - The rest, we don't know.
- This topology was considered reasonable equivalence to CCQE interaction. But actually all the following would fall into the selection :
 - 1. CCQE
 - 2. CCRES followed by a pion absorption
 - 3. CC2p2h where a neutrino is scattered off more than one nucleon rather than a single nucleon.

Overview

- Instead of CC0 π , we narrow down the selection to CC0 π Np requiring reconstructed proton tracks.
- Not only the muon kinematics, but also the proton kinematics now play a role in an analysis.
- How should we play with this additional information?

Observables

1. Inferred proton kinematics from the muon

$$E_{\nu}^{rec} \approx \frac{m_p^2 - m_{\mu}^2 + 2E_{\mu}(m_n - V) - (m_n - V)^2}{2[(m_n - V) - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$$

$$E_{\mu} = \sqrt{(p_{\mu}^2 + m_{\mu}^2)}$$

$$E_{p} = E_{\nu} - E_{\mu} + m_{p}$$

- 2. Reconstructed proton kinematics
- 3. Differences

$$\Delta p_p = p_p^{measured} - p_p^{inferred}$$

$$\Delta \theta_p = \theta_p^{measured} - \theta_p^{inferred}$$

$$|\Delta p_p| = |\vec{p}_p^{measured} - \vec{p}_p^{inferred}|$$

= Analysis Variables

Observables

- Reconstructed distributions of three analysis variables for selected events breaking down into different neutrino interaction modes.
- There is nice separation between CCQE (black) and CCnQE (CCRES (blue) and 2p2h (red)).
- It is a bit harder to separate 2p2h from CCRES.
- Plot was produced with NEUT 6B.

Strategy: Selection

Selection

- CC0 π Np with 4 reconstructed topologies :

Signal Definition with Phase-space Constraints

- $-1 \mu + 0 \pi + Np$
- Cuts on true proton phase-space (based on the detector acceptance)
 - $p_p > 450 \text{ MeV/c}$
 - $cos\theta_p > 0.4$
- Binned true muon phase-space

Strategy: Muon PS Binning

NEUT Prod6B

April 13 2017

Strategy: Machinery

- This analysis aims to unfold the <u>observables</u> of the <u>selection</u>.
 - Main motivation of unfolding is to provide the true level information getting rid of detector effects, so that it can be compared to other experiments or theoretical calculations.
 - Method: Iterative Bayesian Unfolding
 - Data sets: nominal NEUT 6B (training MC) and nominal GENIE 6B (alternate model to validate the machinery).

Validation

What to answer

- how robust the machinery is: no matter what the MC prior is, the machinery should be able to recover the fakedata truth.

How to answer

- unfold GENIE fakedata to NEUT prior to see if the unfolding recovers the fakedata truth.
- unfolded GENIE fake data to alternate prior to see if the unfolding gives the consistent results.

Validation

Sample bin

$$0.8 < cos\theta_{\mu} < 1.0 , 250 < p_{\mu} < 750$$

• Forward-going muons with medium momenta. This bin is where CCnQE contribution is enhanced.

Validation

• Unfolded results (black points) of GENIE (red solid) to NEUT (black dashed).

Decision Making

• How should we decide to reject or accept a given unfolded result? χ^2 is often used to qualify a fit, which is defined as :

$$\chi^2 = \Sigma(\text{unfolded}_i - \text{true}_i)cov_{ij}^{-1}(\text{unfolded}_j - \text{true}_j)$$

• The χ^2 values of all the results are shown in the Table on the right.

χ^2	Δp_p	$\Delta \theta_p$	$ \Delta p_p $
bin0	19.07	44.30	5.04
bin1	38.39	22.33	47.37
bin2	40.07	53.23	93.48
bin3	14.61	42.51	15.77
bin4	27.19	11.70	24.42
bin5	12.77	29.58	37.83
bin6	3.47	27.33	44.42

Decision Making

- See the χ^2 values of nominal results along with Toy-MC driven χ^2 distributions. The idea is :
 - 1. We weight nominal NEUT according to statistical, model, and detector uncertainties to get a toy-MC.
 - 2. We unfold the GENIE fakedata with a generated toy and compute the .
 - 3. Repeat steps 1 and 2 over 500 toys.
 - 4. Plot the values over the toys.
- χ^2 for each toy is defined as: $\chi^2 = \Sigma(\text{unfolded}_{toy,i} - \text{true}_i)cov_{ij}^{-1}(\text{unfolded}_{toy,j} - \text{true}_j)$

Decision Making

momentum bin5 (genie2neut)

threemomentum bin5 (genie2neut)

angle bin5 (genie2neut)

- Here we can see where the nominal χ^2 sits on the χ^2 distribution. There is still some discussion going on how to interpret this. It can be seen in a way that : varying the model assumption within certain uncertainties, the can be varied as much as shown in the χ^2 distributions. If the nominal χ^2 is within the distribution, the given result can be accepted.
 - However, this does not tell you how much GENIE/NEUT model discrepancy (model dependency) gets into the unfolding.

April 13 2017 1-

Conclusions

- Unfold imbalance in proton kinematics to explore nuclear effects.
 - Analysis variables : Δp_p , $\Delta \theta_p$, $|p_p|$
 - Selection : $CC0\pi Np$
 - Machinery: iterative Bayesian unfolding
- The machinery looks in general working fine. However, we need more systematic way to make the final decision.
 - χ^2 studies using 500 toy-MC. It is still under discussion how to interpret the results.

Back Up

Back Up

Feb 10 2017 2

Observables

- If CCQE is identified as the topology of one lepton, no pion, without requiring any dedicated proton tracks, all the three above would appear as the same events.
 - 1. CCQE
 - 2. CCRES followed by the pion absoprtion.
 - 3. CC 2p2h where a neutrino is scattered off more than one nucleon rather than a single nucleon.

Feb 10 2017

Backward-going Bin

- Momentum difference (top left): the unfolding does not recover the truth (red solid) at all. Instead it stays at the initial prior (black dashed).
- Angle difference (top right): it seems that the unfolded result is well converged at the tail, but still there is big bias at the peak.
- Three-momentum difference (bottm left) : Even though there is some bias, it is well covered by the uncertainties.

Feb 10 2017

Backward-going Bin

 The bins where the efficienci is low or the discrepancy is high are not always consistent with the unconverged bins on the previous slides.

Feb 10 2017 2