Weekly Meeting

May 11th 2017

e Large updates to IO Library
* Working on status handling
* Meeting with Belina today

* Thesis outline

* CAP Poster
* Abstract still has “submitted” tag.
e Starting to work on poster.

|O Library Updates:

* Updated packing functions. User’s only use pack_event and
pack_ eventlList functions.

* Packing functions are now more streamlined.
* Added unpacking functions.
* Added get_size functions.

Data Structures

TRIGPRIMITIVE DETECTOR
Lrillgeztjgus towerNum
CDMS_EVENT — numPhononChannels CHANNEL
I numChargeChannels
detectorID prepulseLength
eventSizeBytes detectorID detectorType onpulselength
. L. dcrcindex postpulselLength
triggerID unixtime . '
.) dcrcO_serial pretriggerOffset
triggerType rt_time : :
. . dcrcO_version samplerateHigh
global timestamp rt_timefrac !
= dcrcl_serial samplerateLow
XL dcrcl_version channelType
vector<TRIGPRIMITIVE> primitives num_triggers = YP
Ny channelNum
trigger_time readoutStatus
vector<DETECTORS> detectors ' imef
trlgge'r_t|me ee seriesTime vector<WORD>*data
amplitude .
: seriesTimefrac
triggerword
maskparis

DCRC vector<CHANNEL> channels

Change to the Data Structure

* | propose adding an integer variable “waveformSize” which is the size
of the data (waveform) vector.

* Having this variable is extremely helpful for unpacking the data.

* In the IO Library, | added an additional row to the format (but that can
be changed):

w Ox1 | pre-trigger offset (22 bits) | ch num |ch type
E n pre-pulse samples
= | & = 5 5
% | © n on-pulse sample
= n post-pulse samples
..;“f sampling rate high in kHz | sampling rate low in kHz
z | a Size of waveform data
T = sampl sampl
= samp3 samp?2

sampiN sampMN-1

The Updated Functions

pack_event:

Inputs:
DWORD *emptybuffer
CDMS_EVENT *ev_ptr

Goes through CDMS_EVENT,
packs accordingly

pack eventList:

Inputs: Goes through vector of
DWORD *emptybuffer CDMS_EVENTSs, packs
vector<CDMS_EVENT> *evlist accordingly

Outputs:
int status
Filled emptybuffer

Outputs:
int status
Filled emptybuffer

The Updated Functions

unpack_event:

Inputs:
DWORD *databuffer
CDMS_EVENT *ev_ptr

unpack eventList:

Inputs:
DWORD *databuffer
vector<CDMS_EVENT> *evlist

Goes through databuffer,
unpacks into COMS_EVENT

Goes through databuffer,
unpacks into vector of
CDMS_EVENTSs

Outputs:
int status
Filled CDMS_EVENT

Outputs:

int status
Filled vector of
CDMS_EVENTS

The Updated Functions

get_eventsize:

Inputs: Outputs:
CDMS_EVENT *ev_ptr Size of array needed

get_eventlListsize:

Inputs: Outputs:
vector<CDMS_EVENT> *evlist Size of array needed

Internal Functionality: pack event

pack_event

Pack Ox9 header

Pack Ox5 header + data

Pack Ox7 header + data
Call pack_primitive
Pack Ox3 header

Call pack_detector

Pack Ox8 header

Loop over numPrims

4.[

Loop over numDetectors

Loop over numChannels

N

Internal Functionality: pack eventList

@_eventust

Loop over numEvents

Pack Ox9 header

Pack Ox5 header + data

Pack Ox7 header + data
Call pack_primitive
Pack Ox3 header

Call pack_detector

Pack Ox8 header

Loop over numPrims

4.[

Loop over numDetectors

Loop over numChannels

N

10

Internal Functionality: unpacking

* The internal functionality of the unpacking functions is analogous to
the packing functions.

The Updated Functions

e User’s will use pack_event function, even if just to pack subset of
information.
e E.g. pack prim information....would still use pack_event.

* Because in CDMS_EVENT, detectors.size() = 0, so no information about
detectors is packed.

* Event builder would combine packed buffers

Error Handling

* Ben thinks we should stick to ‘status’ method, instead of c++ exceptions
(easier to implement).

* My takeaway from Ben’s comments:

* Have an enum to differentiate types of errors.

« CDMS_EVENT has a new field for errors. | think this could be a vector of
errors.

* |O Library can have a PrintErrors function, which user can decide to use.
* Int status will just be used to indicate success or failure.
* Handling errors will be determined by the users.

Error Handling

int status = unpack _event(buffer, &myevent);
if (status != TIOLIBRARY::STATUS OK){
PrintErrors(&myevent); //users can decide to print errors
//users decide how to handle errors

void IOLIBRARY::PrintErrors(CDMS_EVENT *ev_ptr){
numErrors = errors.size();
for(int 1 = @; i<numErrors; i++){
//print errors[i];
//can also have ifdef MIDAS ...

DATA FORMAT VERSION 1: Created: 05. Feb. ‘16, Last updated: 30. Jun. 16

bits 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
0x9 format version=1 | total n triggers read
Ox5 event size in bytes
trigger ID
trigger type
global timestamp low
global timestamp high
Ox7 | n primitives in event
ength of entry (=0x6 block) in bytes
0x6 | | trig status |pileup| etector it nde
% T at which rt was issue
E_ | time fraction rt wa n (100nsec/coL
= e of trigger in se | me It was run in se
» na 18 | e fraction ¢ igger (1 ec/ct |
w
ke Irigger we | peak amplitude
S 0x3 n detectors in event
; 0x2 detector type | detector id lindex
ve DCRC1 serial number | DCRC1 version DCRCO serial number | DCRCO version
Ox4 | readout status series time in sec
| series time fraction (100nsec/count)
0x0 n channels to follow
7 Ox1 pre-trigger offset (22 bits) | ch num ||:h type
E n pre-pulse samples
:Zq % r1n nn—;_:iulse Sfmples
= post-pulse samples
% sampling rate high in kHz sampling rate low in kHz
= sampl samp0
= samp3 samp2
sampN | sampN-1
Ox8 | total n preceding triggers

