Progress Update

Enze Zhang

2017/07/10

Brief Introduction

 My project: Develop a machine learning algorithm to identify electrons/muons. (continue on <u>Emily's work</u>)

- Steps of detecting neutrinos with WC detector:
 - Simulate events with WCSim and Skdetsim.
 - Collect information from PMTs to get images.
 - Analyze the images to identify particles (electron/muon).
 - Determine the flavor of their corresponding neutrinos.

Build Tensorflow

Acquire Tensorflow directly on SciNet by:

module unload intel/12.1.3 module unload python/2.7.2

module load intel/15.0.6 module load python/2.7.8

Build WCSim

- Preparations:
 - ✓ Build ROOT (first use module load, now source from Hiro's directory)
 - "DISPLAY not set"
 - ✓ Build Geant4
 - ✓ Download Geant4 data files online

- Build WCSim with Cmake:
 - "Could not find ROOTConfig.cmake provided by ROOT"

- Introduction:
 - TensorFlow is an open source software library for machine learning across a range of tasks, and developed by Google to meet their needs for systems capable of building and training neural networks to detect and decipher patterns and correlations, analogous to the learning and reasoning which humans use.

- Progress:
 - Download Tensorflow in my native computer.
 - Finish reading <u>Getting Started</u> part of the tutorial, and run all the scripts in it.

Getting Started

Getting Started With TensorFlow

MNIST For ML Beginners

Deep MNIST for Experts

TensorFlow Mechanics 101

tf.contrib.learn Quickstart

Building Input Functions with tf.contrib. learn

Logging and Monitoring Basics with tf. contrib.learn

TensorBoard: Visualizing Learning

TensorBoard: Embedding Visualization

TensorBoard: Graph Visualization

TensorBoard Histogram Dashboard

• MNIST for ML Beginners uses MNIST problem to describe the fundamental components of a tensorflow script, including model parameters, input and output, loss function, optimizer, training loop and evaluation.

• **Deep MNIST for Experts** substitutes the Softmax Regression Model with a more complicated convolutional neural network which performs much better.

• *tf.contrib.learn* introduces TensorFlow's high-level machine learning API (tf.contrib.learn), and *Logging and Monitoring Basics with tf.contrib.learn* implements it with some logging and monitoring methods, explaining how to audit the progress of model training.

• The last four chapters is about TensorBoard, a utility to visualize different aspects of machine learning.

```
tensorflow_learning — -bash — 72×24
Adding run metadata for 799
Accuracy at step 800: 0.9639
Accuracy at step 810: 0.9643
Accuracy at step 820: 0.9629
Accuracy at step 830: 0.9655
Accuracy at step 840: 0.9649
Accuracy at step 850: 0.9655
Accuracy at step 860: 0.9646
Accuracy at step 870: 0.963
Accuracy at step 880: 0.9637
Accuracy at step 890: 0.9665
Adding run metadata for 899
Accuracy at step 900: 0.9643
Accuracy at step 910: 0.9682
Accuracy at step 920: 0.9673
Accuracy at step 930: 0.9679
Accuracy at step 940: 0.9645
Accuracy at step 950: 0.9659
Accuracy at step 960: 0.9642
Accuracy at step 970: 0.9645
Accuracy at step 980: 0.966
Accuracy at step 990: 0.9678
Adding run metadata for 999
(tensorflow) inside-65-51-209:tensorflow learning zhangenze$
```

Main Graph

