¹//This document describes all possible events that BdNMC can generate.
//The following is for the dark photon model (not baryonic)
// In progress
//S.Atashi
//Last update: Thursday June 08

Production channel: meson decay

Description of interactions: χ/χ^{\dagger} **interacts with scattering_particle** $P + P \rightarrow meson + something$ $meson \rightarrow \gamma + V$ $V \rightarrow \chi + \chi^{\dagger}$ χ/χ^{\dagger} scatters with scattering_particle

Format in events.dat:

event number	•							
meson	px	ру	pz	Ε				
V	px	ру	pz	Ε				
DM	px	ру	pz	Ε				
scatt_part	px	ру	pz	Ε	х	У	Z	t

Notes:

- meson = neutral pion (π⁰ in pi0_decay), eta (in eta_decay), phi (in phi_decay) from Patrick's comments in the code (the parameter card)
- Appendix says these are also possible production channels: omega (omega in omega_decay), rho (in rho_decay) but when I run it with omega_decay, I get "No DM production expected" (maybe there is DM production for only a certain set of model parameters, but I don't know what), and I get a seg fault when I run I with rho_decay => these production channels are probably not yet implemented in BdNMC
- "pi0 and eta decays provide the dominant production channel for sufficiently light DM and mediators" from paper
- scattering_particle = proton, neutron, electron
- scattering off a proton is much more likely than scattering off a neutron (the dominant term in incoherent NC-like nucleon scattering couples to electric charge)

Description of interactions: both $\chi + \chi^{\dagger}$ interact within detector

 $\begin{array}{l} P+P \rightarrow meson + something \\ meson \rightarrow \gamma + V \\ V \rightarrow \chi + \chi^{\dagger} \\ \chi \ scatters \ with \ scattering_particle \\ \chi^{\dagger} \ scatters \ with \ another \ scattering_particle \\ \rightarrow \ should \ be \ rare \ (both \ \chi + \chi^{\dagger} \ interact \ within \ detector) \end{array}$

Format in events.dat:

event numbe	r							
meson	px	ру	pz	Ε				
V	px	ру	pz	Ε				
DM	px	ру	pz	Ε				
scatt_part	px	ру	pz	Ε	Х	У	Z	t
DM	px	ру	pz	Ε				
scatt_part2	px	ру	pz	Ε	Х	У	Z	t

Notes:

meson = pion(π^0 in pi0_decay), eta (in eta_decay), phi (in phi_decay) scattering_particle1 or 2 = proton, neutron, or electron

Description of interactions: one of χ / χ^{\dagger} scatters in the detector, the other intersects the detector but doesn't scatter

 $\begin{array}{l} P+P \rightarrow meson + something \\ meson \rightarrow \gamma + V \\ V \rightarrow \chi + \chi^{\dagger} \\ \chi / \, \chi^{\dagger} \, scatters \end{array}$

Format in events.dat:

event number								
meson	px	ру	pz	Е				
V	px	ру	pz	Е				
DM	px	ру	pz	Е				
DM	px	ру	pz	Е				
scatt_part	px	ру	pz	Е	Х	у	Z	t
or								
event number								
meson	px	ру	pz	Е				
V	px	ру	pz	Е				
DM	px	ру	pz	Ε				
scatt_part	px	ру	pz	Е	Х	У	Z	t
DM	px	ру	pz	Ε				

Notes:

meson = pion(π^0 in pi0_decay), eta (in eta_decay), phi (in phi_decay) scattering_particle = proton, neutron, electron

Production channel: proton bremsstruhlung

Description of interactions: χ/χ^{\dagger} **interacts with scattering_particle** $p + N \rightarrow p + N + V$ $V \rightarrow \chi + \chi^{\dagger}$ χ/χ^{\dagger} scatters with scattering_particle N = p or n

Format in events.dat:

event numbe	r						
V	px	ру	pz				
DM	px	ру	pz				
scatt_part	px	ру	pz	х	У	Z	t

Note: scattering_particle = proton, neutron, electron

Description of interactions: both $\chi + \chi^{\dagger}$ interact within detector

 $p + N \rightarrow p + N + V$ $V \rightarrow \chi + \chi^{\dagger}$

 χ scatters with scattering_particle

 χ^{\dagger} scatters with another scattering_particle \rightarrow should be rare (both $\chi + \chi^{\dagger}$ interact within detector)

N = p or n

Format in events.dat:								
event numbe	er							
T 7								

V	px	ру	pz				
DM	px	ру	pz				
scatt_part	рх	ру	pz	Х	У	Z	t
DM	px	ру	pz				
scatt_part_2	px	ру	pz	Х	У	Z	t

Note: scattering_particle1/scattering_particle2 = proton, neutron, electron

Description of interactions: one of χ / χ^{\dagger} scatters in the detector, the other intersects the detector

but doesn't scatter $p + N \rightarrow p + N + V$ $V \rightarrow \chi + \chi^{\dagger}$ χ/χ^{\dagger} scatters with scattering_particle

N = p or n

Format in e	e vents.d er	lat:					
V	px	py	pz				
DM	px	DV	pz				
DM	px	py	pz				
scatt_part	px	ру	pz	Х	У	Z	t
or							
event numbe	er						
V	рх	ру	pz				
DM	px	py	pz				

scatt_part	px	ру	pz	Х	У	Z	t
DM	px	ру	pz				

Note: scattering_particle = proton, neutron, electron

Production channel: pi-minus_capture

this is a baryonic production channel, according to the comments in the BdNMC parameter card *** BdNMC gives a negative number of V's, then produces a seg fault.**

Once I look at some events, I'll have a better idea of what they look like, but for now:

Description of interactions: χ/χ^{\dagger} interacts with scattering_particle

 $P + \pi^{-} \rightarrow N^{*} \rightarrow N + V$

(as described by Patrick on github where he introduces the features of BdNMC 3.1.5; I'm assuming N= p/n as usual)

t

 $V \rightarrow \chi + \chi^{\dagger}$

<mark>χ /χ[†]scatters with scattering_particle</mark>

I haven't see this in BdNMC, but this is more or less what it should look like Format in events.dat:

event number

π-	px	ру	pz
V	px	ру	pz
DM	px	ру	pz
scatt_part	px	ру	pz

Note: scattering particle = proton, neutron, or electron

Description of interactions: both $\chi + \chi^{\dagger}$ **interact within detector** $P + \pi^{-} \rightarrow N^{*} \rightarrow N + V$ $V \rightarrow \chi + \chi^{\dagger}$ χ scatters with scattering_particle χ^{\dagger} scatters with another scattering_particle \rightarrow should be rare (both $\chi + \chi^{\dagger}$ interact within detector)

<mark>N = p or n</mark>

Format in ev	ents.d	lat:				
event number						
π ⁻	px	ру	pz			
V	px	ру	pz			
DM	рх	ру	pz			
scatt_part	px	ру	pz	Х	x y	x y z
DM	рх	ру	pz			
<pre>scatt_part_2</pre>	px	ру	pz	Х	x y	x y z

Note: scattering particle = proton, neutron, or electron

Description of interactions: one of χ / χ^{\dagger} scatters in the detector, the other intersects the detector

but doesn't scatter

P + π⁻ → N* → N + V V → χ + χ^{\dagger} χ/χ^{\dagger} scatters with scattering_particle

N = p or n

Format in e	vents.d	lat:					
event numbe	er						
π-	px	ру	pz				
V	px	ру	pz				
DM	px	ру	pz				
DM	px	ру	pz				
scatt_part	px	ру	pz	х	У	Z	1
or							
event numbe	er						
π ⁻	рх	ру	pz				
V	px	ру	pz				
DM	px	ру	pz				
scatt_part	px	ру	pz	х	У	Z	1
DM	px	ру	pz				

Note: scattering particle = proton, neutron, or electron

Production channel: parton production

* need to look at the format of events.dat in bdnmc with this channel; does it look the same as proton bremm? (I get a seg fault when I use his production channel without a distribution and appendix says "parton_V" (the distribution for parton_production) needs externally generated data for V-production at the parton level). Once I look at some events, I'll have a better idea of what they look like, but for now:

Description of interactions: χ/χ^{\dagger} **interacts with scattering_particle**

P + N → V* V* → $\chi + \chi^{\dagger}$ χ/χ^{\dagger} interacts with scattering_particle

<mark>N = p or n</mark>

*Format in events.dat:

event number			
V	рх	ру	pz
DM	px	ру	pz

scatt_part px py pz x y z t

scattering_particle = neutron, proton, or electron

Description of interactions: both $\chi + \chi^{\dagger}$ interact within detector

 $P + N \rightarrow V^*$

 $\frac{V^* \rightarrow \chi + \chi^{\dagger}}{\chi \text{ interacts with scattering_particle}}$

 χ^{\dagger} interacts with scattering_particle_2

 \rightarrow should be rare (both $\chi + \chi^{\dagger}$ interact within detector)

<mark>N = p or n</mark>

Format in events.dat:

<mark>event number</mark>							
V	рх	ру	pz				
DM	px	ру	pz				
scatt_part	px	ру	pz	х	У	Z	t
DM	px	ру	pz				
<pre>scatt_part_2</pre>	рх	ру	pz	х	у	Z	t

scattering_particle = proton, neutron, electron

Description of interactions: one of χ/χ^{\dagger} scatters in the detector, the other intersects the detector but doesn't scatter $P + N \rightarrow V^*$

 $V^* \rightarrow \chi^+ \chi^\dagger$ χ/χ^\dagger scatters with scattering_particle

<mark>N = p or n</mark>

Format in e	vents.d	lat:					
<mark>event numbe</mark>	er						
V	px	ру	pz				
DM	px	ру	pz				
DM	px	ру	pz				
scatt_part	px	ру	pz	Х	У	Z	t
or							
<mark>event numbe</mark>	er						
V	px	ру	pz				
DM	px	ру	pz				
scatt_part	px	ру	pz	х	у	Z	t
DM	рх	ру	pz				

scattering particle = proton, neutron, electron

(for all production channels) it's possible that the produced χ undergoes inelastic NC π^0 -like nucleon scattering:

a situation "where there is sufficient momentum transfer to produce a neutral pion which subsequently decays producing a two-photon signature"

"Incoherent NC π^0 ; pion emerges via the production of a Δ (1232) resonance in the following process ¹ χ + N $\rightarrow \chi$ + Δ

 $\Delta \rightarrow N + \pi^0$

				_				
DM	px	ру	pz	E				
recoil_DM	px	ру	pq	E				
Delta	px	ру	pz	E	Х	У	Z	t
nucleon	px	ру	pz	E				
pi0								

It is possible that both DM particles undergoes NC π^0 -like scattering in the detector (rare), ior one DM particle undergoes NC π^0 -like scattering in the detector while the other (the DM antiparticle) intersects the detector but does not scatter. Will show what these events look like .

The papers I refer to

1- "Light dark matter in neutrino beams: production modelling and scattering signatures at MiniooNE, T2K, and SHiP" by Patrick de Niverville et al.