
Weekly Meeting
Matt Wilson – December 6 2017

NoisePSD Decider 1



Purpose of noisePSD Decider

• Check the noise PSD traces for each channel – determine whether the 
noise PSD crosses one or more maximum or minimum threshold.

• Can be used to check for peaks at specific frequencies (e.g. 60 kHz) 
and/or large range of frequencies.

• Thresholds can be made as detailed or as simple as desired.

NoisePSD Decider 2



The Decider Code

• Can be found: 
http://titus.stanford.edu:8080/git/tree/?f=python/dqm/deciders/noisePSD
_decider&r=DAQ/dqm.git&h=feature/mysql-dev

• noisePSD_decider.py is the main code that updates settings, makes 
decisions, etc

• noisePSD_read_settings.py is used to read in the settings from the text files

• file_path.py is where the paths necessary for this decider are held

• plot_noisePSD.py is used to plot the noisePSD traces

• The remaining text files are what is used to set the settings for this decider

NoisePSD Decider 3

http://titus.stanford.edu:8080/git/tree/?f=python/dqm/deciders/noisePSD_decider&r=DAQ/dqm.git&h=feature/mysql-dev


Using the noisePSD Decider

• Currently, this decider is only able to make decisions on old Soudan 
data (mainly because that is what I have readily available, and I don’t
know exactly what the SNOLAB root data will look like)

• If you would like to test the code, use Soudan data that uses iZIP4 
type detectors
• The root data I am using is from the FermiLab cdmsz3.fnal.gov node in 

/data1/cdmsmini/data3/cdmsbatsProcessedData/

• Eventually, this decider will need to be adapted for SNOLAB root data.

NoisePSD Decider 4



Using the noisePSD Decider

• To try the decider, make sure to update the paths in file_paths.py

NoisePSD Decider 5

} update



noisePSD Settings

There are two categories of settings for this decider:

• Threshold settings – the actual thresholds that will be compared against 
the noisePSD traces

• Decision settings – the parameters to determine how decisions get made.
For example, how many bins need to cross a threshold to be considered a 
“bad” channel? How many bad channels make a detector “bad”.

All settings can be applied to any or all data types and any or all channels, 
detectors, or towers

The text files beginning with last_*.txt are to not be altered…they are used 
to determine if updates are required.

NoisePSD Decider 6



Threshold Settings

• Can include as many thresholds as desired, labelled as t1, t2, …

• For each threshold, can have as many entries as desired for certain data types or 
certain elements (elements mean channels, detectors, towers, etc..)

• For each entry, you can put in as many ‘Max’ or ‘Min’ entries as desired, 
corresponding to max and min threshold, respectively.

• ‘Min’ and ‘Max’ entries required a specific format to add a threshold. The format 
is as follows:
• <min frequency> <max frequency> <threshold value>

• This piecewise method is what allows the thresholds to be implemented in very 
customizable ways – from very simple to very detailed

• ‘Min’ and ‘Max’ entries that overlap in frequencies is fine – the decider always 
takes the most constraining threshold entry at any given frequency.

NoisePSD Decider 7



Threshold Settings

NoisePSD Decider 8

 Indicate threshold
 Indicate data types, comma separated. E.g. “Cf, Cs”

 Indicate which elements this entry applies to, comma separated. E.g. “T1Z2, T2Z3, T4 charge”

Min and max entries. Each min or max entry has a format of <min 
frequency> <max frequency> <threshold value>. Min or max entries are 
separated by comma



Threshold Settings

NoisePSD Decider 9

*Note that the plots only show the most constraining 
thresholds (overlaps are removed)



Threshold Settings

NoisePSD Decider 10

*Note that the plots only show the most constraining 
thresholds (overlaps are removed)



Decision Settings

• Similar formatting to the threshold settings, but instead give parameters needed 
to make decisions. Includes the following:

• “bad channel t#” – how many bins make a bad channel for threshold #

• “bad detector charge” – how many bad charge channels make a bad detector

• “bad detector phonon” – how many bad phonon channels make a bad detector

• “bad tower” – how many bad detectors make a bad tower

• “bad decision channel” – how many bad channels make a global bad decision

• “bad decision detector” – how many bad detectors make a global bad decision

NoisePSD Decider 11



Decision Settings

NoisePSD Decider 12

max threshold
min threshold



Settings

• Seemingly overlapping entries in the “Applied to” line are fine in this 
code.

• For example, if one entry exists for “all phonon” channels, and
another entry is added for “P_TOP_3 T1Z1” channel, there is an 
overlap in entries for this one channel. However, the code always 
assigns entries to the more specific element. In this case, the first 
entry will have instead all phonon less P_TOP_3 T1Z1. The user does 
not need to worry about this sort of overlap.

NoisePSD Decider 13



noisePSD Plots

• Currently, the decider is set up to plot, save, and display the noisePSD
plot for a detector whenever a channel is deemed to be “bad”. 

• This is arbitrary, and plots may not even need to be saved or 
displayed.

NoisePSD Decider 14



Issues with keeping entries unique

• The main issue I had when working on this decider has to do with 
ensuring entries are unique to data types or elements.

• For instance, there should only ever be one entry for Cf data type at a
time, and there should only ever be one entry for P_TOP_1 T1Z1 
channel at a time.

• The way that the functions in the settings code search for entries, the
wrong entry might be returned for situations that are probably rare 
but possible.

• Examples on next slide:

NoisePSD Decider 15



Issues with keeping entries unique

• Example 1:
• Initial have entry (1) that applies to both Cf and Cs calibration

• Add entry to database – data type entries are ((Cf, Cs))

• Later, decide that Cs should have its own entry (2). Add separate entry to
database – data type entries are now ((Cf, Cs), (Cs))

• I want to call upon the entry for Cs. The code returns the first entry in the list 
that includes Cs. In this case, it is entry (1). It should be entry (2). 

• The code does not ensure that there is only one entry per data type at a given 
time.

NoisePSD Decider 16



Issues with keeping entries unique

• Example 2:
• Initial have entry (1) that applies to both P_TOP_1 T1Z1 and P_TOP_2 T1Z1 

Add entry to database – element entries are ((P1, P2))

• Later, decide that P_TOP_2 T1Z1 should have its own entry (2). Add separate
entry to database – element entries are now ((P1, P2), (P2))

• I want to call upon the entry for channel P2. The code returns the first entry in 
the list that includes P2. In this case, it is entry (1). It should be entry (2). 

• The code does not ensure that there is only one entry per channel at a given 
time.

NoisePSD Decider 17



Issues with keeping entries unique

• Example 3:
• Initial have entry (1) that applies to channel P_TOP_1 T1Z1

• Add entry to database – element entries are ((P1 T1Z1))

• Later, decide that T1Z1 should have its own entry (2). Add separate entry to
database – element entries are now ((P1 T1Z1), (T1Z1))

• I want to call upon the entry for channel P1. The code returns the first entry in 
the list that includes P1. In this case, it is entry (1). It should be entry (2). 

• The code does not ensure that there is only one entry per channel at a given 
time.

NoisePSD Decider 18



Issues with keeping entries unique

• In noisePSD_decider.py lines 450 – 587 and 649 - 785, I have included 
a lot of code to try to work around these type of scenarios

• However, it may not be complete, as these scenarios are involve very 
specific sequences of events.

• It also seems to be very costly computationally – it take several 
minutes to read in settings and upload them to the database

NoisePSD Decider 19



Tracking Settings

• The issues I previously discussed may be part of a broader concern of 
tracking settings over time.

• Ideally, the database should hold a “current” version of the settings, so 
when I call upon the settings to make a decision, I get the most recent 
version of the settings.

• Furthermore, the settings themselves should be logged over time (I know 
that there is a log of when parameters are added for a 
channel/detector/tower, but the actual setting values themselves should 
be logged as well)

• It would be good to know what version of the settings were used at any 
given time when looking back.

• My apologies if this is already done! In this case, I just haven’t been able to 
see where settings are logged.

NoisePSD Decider 20



Ben’s Web interface

• It seems to connect directly to the database

NoisePSD Decider 21



Ben’s Web interface

NoisePSD Decider 22



Ben’s Web interface

NoisePSD Decider 23



Ben’s Web interface

NoisePSD Decider 24



Ben’s Web interface

• Kind of ugly for my json variable

• Difficult if you want to apply an entry to “all charge” or “all phonon”

• Just now – able to overlap element to two entries (Add two charge 
channels to the entry for just phonon channels).

• I think this would be approved if you weren’t allowed to add an 
element (or child/parent element) if it overlaps with another entry

• Same with data type

• Still concerned about tracking settings versions

NoisePSD Decider 25



Dark Photon

• Start working on sensitivity code

• First steps include getting the WIMP sensitivity code to work – and 
understand the calculations involved

NoisePSD Decider 26



Meetings in the New Year

• Proposed meeting for tower/electronics/DAQ at SLAC in Feb

• Proposed meeting for Analysis (Dark photon) between Jan and Mar

NoisePSD Decider 27


