Corina Nantais

Local meeting 04 May 2017

Search at Super-Kamiokande for neutral current de-excitation gamma induced by light dark matter in the T24st theatthin GelDeaknema the two simulators.

T2K is a long baseline neutrino oscillation experiment

T2K ... can be used to produce and then detect DM

Propose to detect accelerator-produced sub-GeV (light) dark matter in Super-K

Dark sector connected to Standard Model through vector portal

Kinetic mixing between Standard Model γ and vector mediator A'

Some current constraints

Some future projections

Theorist estimate of T2K Super-K sensitivity P. de Niverville, C.-Y. Chen, M. Pospelov, and A. Ritz, PRD **95**, 035006 (2017)

Super-K water Cherenkov detector is well understood

Super-K water Cherenkov detector is well understood²²

22

Figure 2.19: Energy of secondary de-excitation gamma-ray versus kinetic **energy** of the incident

Study NCQE for neutrino first, then apply to DM

Figure 2.19: Energy of secondary de-excitation gamma-ray versus kinetic operation the incident

22

Nuclear de-excitation gammas after the neutrino-oxygen neutral current quasi-elastic (NCQE) interaction

The incident particle excites the ¹⁶O nucleus, and Super-K detects the gammas from the nucleus de-exciting

600 MeV neutrino beam \rightarrow single nucleon emission is dominant

contribution of $lp_{3/2}$ is overwhelming: 6.32 MeV from $(lp_{3/2})_p$ 6.18 MeV from $(lp_{3/2})_n$

T2K made first observation at this energy T2K, PRD 90 072012 (2014)

Need to understand secondary gamma production

An emitted neutron can excite another ¹⁶O nucleus, producing secondary gammas

Cannot be easily separated by energy or timing

Neutrons, not protons, generate most secondary gammas

Can't separate secondary gammas using energy

K. Huang PhD thesis

Can't separate secondary gammas using timing

Reduce systematic uncertainty due to secondary gammas

NCQE 68.6%	NCother	$\mathbf{C}\mathbf{C}$	beam-unrelated
68.6%			beam amerada
00.070	25.5%	4%	2%
11%	10%	12%	_
—	18%	24%	—
10%	3%	6%	—
13%	13%	7.6%	—
2.1%	2.1%	2.1%	—
_	_	10%	—
20%	25%	30%	0.8%
	11% - 10% 13% 2.1% - 20%	$\begin{array}{cccccccc} 11\% & 10\% & \\ - & 18\% & \\ 10\% & 3\% & \\ 13\% & 13\% & \\ 2.1\% & 2.1\% & \\ - & - & \\ 20\% & 25\% & \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TN-244

neutrino-oxygen NCQE cross section

 $<\sigma_{\nu, \text{ NCQE}}^{\text{obs}} >= (1.75 \pm 0.27 \text{ (stat.)} ^{+0.70}_{-0.36} \text{ (sys.)}) \times 10^{-38} \text{ cm}^2$

Need to understand secondary gamma production

K. Huang PhD thesis

Analysis of neutrino-oxygen NCQE events in T2K-SK

Selection cuts

- 4–30 MeV reconstructed energy
- > 34° Cherenkov angle to remove muons
- ±100 ns of beam timing
- fiducial volume
- reconstruction quality cuts

Analysis of neutrino-oxygen NCQE events in T2K-SK

Selection cuts

- 4–30 MeV reconstructed energy
- > 34° Cherenkov angle to remove muons
- ±100 ns of beam timing
- fiducial volume
- reconstruction quality cuts

suspect discrepancy is due to poor model of secondary gammas

Current MC is NEUT and GCALOR

26

MC simulations do not agree

Simulations based on various theoretical nuclear models, not data

(FLUKA not shown)

Need data to establish reliable simulations

PHITS (Particle and Heavy Ion Transport code System) JAEA (Japan Atomic Energy Agency)

Measure gamma production from neutron beam on water

30–300 MeV neutrons escape the nucleus

A series of experiments at RCNP

- parasite experiment #1: with E361
- parasite experiment #2: with E400
- pilot experiment #1: E465
- pilot experiment #2: E487
- final experiment

A series of experiments at RCNP

- parasite experiment #1: with E361
- parasite experiment #2: with E400
- pilot experiment #1: E465
- pilot experiment #2: E487
- final experiment

Pilot experiment #1: E465

24 h beamtime in June 201680 MeV neutron energywater-filled acrylic container

Configurations:

- I) beam on with water (signal)
- 2) beam on without water (beam-related background)
- 3) beam off (beam-unrelated background)

AmBe, ⁶⁰Co calibration

Testing several detectors

neutron-induced ¹⁶O de-excitation gammas in HPGe

V) 34

neutron-induced ¹⁶O de-excitation gammas in HPGe

35

neutron-induced ¹⁶O de-excitation gammas in HPGe

36

Summary

Search at SK for NCQE de-excitation gammas induced by DM in T2K neutrino beam

- understand detection of gammas in SK after neutrino-oxygen NCQE
- measure secondary gamma production using neutron beam on water, reduce systematic
- improve neutrino analysis, then apply to DM
- DM-neutrino discrimination using time of flight
- compare ratio of neutrino and DM for model independent cross section
- compare neutrino and antineutrino mode data, DM rate won't change
- present results of this complimentary search

Future work

neutrino analysis

- update T2K Runs 1–4 with T2K Runs 5–8, develop analysis for antineutrino events
- update to newest version of MC, NEUT and SKDETSIM
- update neutrino oscillation parameters
- update to improved reweighting for neutrino flux and neutrino cross section

sensitivity study

production:

- indirect production, π^0 from T2K FLUKA proton beam on graphite target
- direct production, estimate from number of protons on target detection:
- energy and direction of dark matter into usual MC (NEUT and SKDETSIM)

timing selection

resolution and uncertainty

secondary gamma production

• depending on results, tune SKDETSIM (Geant3) or select another MC simulation