T2K OTR MONITOR

Proton beam position and width measurement In front of neutrino production target

Why an OTR monitor?

physics systematics:

measure beam position at target to < 1mm

- neutrino energy shift 2.2 MeV/mm
- flux change
 0.6%/mm

similar consideration for beam angle (require < 0.5mrad)

energy shift ~12 MeV/mrad

• target protection (450 \rightarrow 750 \rightarrow 1300 kW beam):

- real-time monitoring
- alert/abort for beam position and width changes
- titanium alloy foil can survive in beam (~5Sv/hr)
 - produces OTR light, transported far away to shielded camera by an imaging optical system

OTR

3

Target and horn focusing region inside He vessel

(1) Beam collimator(2) First horn and target(3) Second horn(4) Third horn

(5) Support modules(6) Iron shielding(7) Concrete shielding

Layout

8 foil positions on rotating disk:

- 1 ceramic fluorescent light
- 4 titanium standard foils for OTR light
- 1 aluminum higher reflectivity than titanium foils
- 1 calibration machined hole pattern that is back-lit for calibration
- 1 empty

Calibration

redundant light sources - lasers, filament lamps

calibration images taken periodically to track calibration foil hole pattern:

- absolute position
- distortion corrections

- efficiency map across acceptance from images with integrating sphere providing uniform light
- tracked with images through the empty foil position

System has been remarkably stable!

Performance

 reliable operation during beam tuning and physics runs since 2009

OTR profile on Ti foil, 9 10¹³ protons

target edge

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 703, 1 March 2013, Pages 45–58

Optical transition radiation monitor for the T2K experiment

S. Bhadra^c, M. Cadabeschi^a, P. de Perio^a, V. Galymov^c, M. Hartz^{a, c,} ▲, ≦, B. Kirby^{c, 1}, A. Konaka^b, A.D. Marino^{a, 2}, J.F. Martin^{a, 3}, D. Morris^b, L. Stawnyczy^c

^a University of Toronto, Department of Physics, Toronto, Ontario, Canada

TRIUMF, Vancouver, British Columbia, Canada

York University, Department of Physics and Astronomy, Toronto, Ontario, Canada

Service pit

possible to replace:

- target
- OTR disk and/or arm
- horns

Slavic Mircen John Sampu Patric Mark

Commissioning

Installing and calibrating OTR-II February 2012

Storage pit

Service pit

Horn 3 in staging area Oct. 2013

4 ----

1.

Impact of OTR on analysis

flux variation changing position and angle by 1 sigma (accounting for correlation)

dominant uncertainty in beam position/angle is the vertical survey uncertainty (1 mm) and SSEM projection (>1 mrad)

- with OTR: $\delta y \sim 0.6 \text{ mm}$ and $\delta \theta_y \sim 0.3 \text{ mrad}$ (correlation ~0.4)

12