Progress Update

Trevor Towstego UofT Neutrino/DM Meeting January 17, 2018

Comparing new cutflow to grid search

New cutflow result:

Grid

Sample	cut	numu/nu mub CC	intrinsic nue/nue b CC	osc nue/nue b CC	numu/nu mub NC	intrinsic nue/nue b NC	Signal	Bkgd	Purity	FOM
2Repi	baseline	1.48	2.00	1.76	3.17	0.21	1.76	6.87	0.20	0.601
	Erec < 1.5 GeV	0.28	0.82	1.57	2.45	0.16	1.57	3.72	0.30	0.683

			background	
			3.71741,	
search result:	(0,1):	1.57100	, 3.55735,	0.093141
	(0,2):		, 3.45775,	
	(0,3):	1.567, 3	3.34787, 0	.706825

- Found typo in grid search script
 - grid search event numbers now match the new cutflow numbers
- Wrote simple code from scratch to check consistency with these two results

3rd Code – Consistency Check

New	cutflow	result:
-----	---------	---------

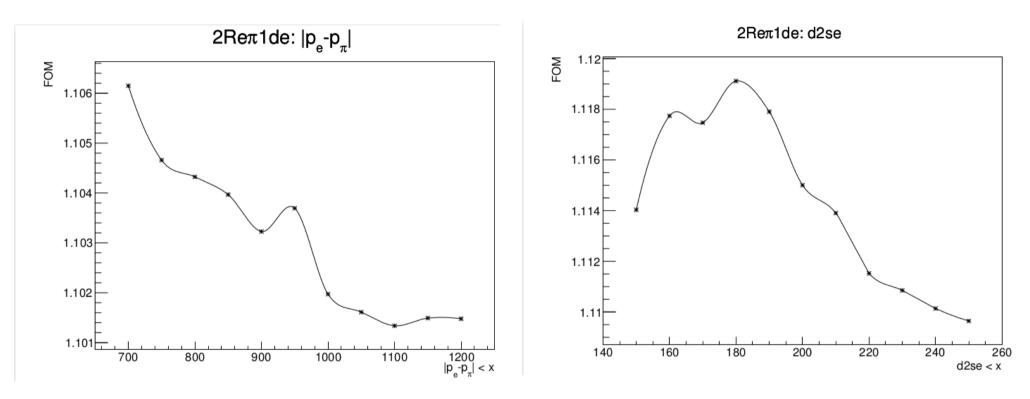
Sample	cut	numu/nu mub CC	intrinsic nue/nue b CC	osc nue/nue b CC	numu/nu mub NC	intrinsic nue/nue b NC	Signal	Bkgd	Purity	FOM
2Repi	baseline	1.48	2.00	1.76	3.17	0.21	1.76	6.87	0.20	0.601
	Erec < 1.5 GeV	0.28	0.82	1.57	2.45	0.16	1.57	3.72	0.30	0.683

Grid search result:

2Repi:	signal	background	FOM
(0,0):	1.57109,	3.71741,	0.683179
		3.35735,	
		3.45775,	
(0,3):	1.567, 3	.34787, 0.	.706825

Consistency check:						
2Repi selection Signal: 1.57109 <						
Bkgd : 3.71741						
FOM : 0.683179	_					

- Signal, background, and FOM are now consistent between three different codes
 - Safe to assume that these values are correct?


Some Grid Search Results

- 2 cuts (in addition to baseline cuts)
 - 1.5 GeV cut included in baseline
 - 2Reπ:
 - |p_e-p_π|
 - p_{low}
 - 2Reπ1de:
 - $|p_e p_\pi|$
 - d2se

2Reπ 2Reπ: p_{low} 2Reπ: |p_e-p_π| FOM FOM 0.6865 0.715 0.686 0.7 0.6855 0.685 0.705 0.6845 0.684 0.7 0.6835 0.695 0.683 1200 |p_-p_| < x 800 900 1000 1100 $p_{low}^{60} > x$ 700 20 25 40 55 30 35 45 50

- Above plots show variation in FOM as cut parameters change (showing case where other cut is not performed)
- Maximum at (4,7): FOM=0.717554
 - $|p_e p_\pi| < 850$ MeV, $p_{low} > 44$ MeV

$2Re\pi 1de$

- Above plots show variation in FOM as cut parameters change (showing case where other cut is not performed)
- Maximum at (1,4): FOM=1.12377
 - $|p_e p_\pi| < 700$ MeV, d2se < 180 cm

Adding more cuts – some issues

- Started working on code for 6 cuts in 2Repi selection
 - $|p_e p_\pi|$
 - (eventually would change this to have separate upper and lower bounds)
 - $-p_{\text{low}}$
 - $m_{e\pi}$ lower boundary
 - $m_{e\pi}$ upper boundary
 - $nII_{2Re\pi}$ - nII_{2Ree} lower boundary
 - $nII_{2Re\pi}$ - nII_{2Ree} upper boundary

- **Issue 1**: can't make 6-dimensional arrays
 - Adapted code to use a 1-dimensional array instead, with size of $n_{\text{grid}}{}^{6}$
 - Ran into another issue...
- **Issue 2**: not enough memory for larger number of grid points
 - Anything greater than n_{grid}=7 required too much memory
 - Possible solutions:
 - Separate grid into a number of sections and run each one separately
 - Part of the reason that the code ran (reasonably) quickly is that it only had to go through each event once and performed all possible cuts on the event at the same time
 - This would slow the code down, but make the memory requirements more manageable
 - Put all grid points into a single histogram, rather than having separate histograms for all points
 - Might not even need to use histograms since we're only dealing with event rates – float array instead?