# 2-ring $v_e$ CC1 $\pi^+$ Selection Studies

Trevor Towstego T2K-SK Pre-Meeting August 22, 2018

## Overview

- Since last collaboration meeting:
  - focused on improving efficiency of  $2Re\pi(1de)$  selections
    - expanded selection beyond fqmrnring[0]==2 and fqmrpid[0][\*]=1e1 $\pi^{+/-}$
    - further explored use of BDTs

$$v_{e} + p/n \rightarrow e^{-} \qquad 1 \text{Re, 0 decay e} \qquad (1\text{Re})$$
  

$$\rightarrow e^{-} + \pi^{+} below CT \qquad 1 \text{Re, 1 decay e} \qquad (1\text{Re1de})$$
  

$$\rightarrow \mu \rightarrow e$$
  

$$\Rightarrow e^{-} + \pi^{+} above CT \qquad 2 \text{Re}\pi, 0 decay e \qquad (2\text{Re}\pi)$$
  

$$\Rightarrow e^{-} + \pi^{+} above CT \qquad 2 \text{Re}\pi, 1 decay e \qquad (2\text{Re}\pi1de)$$
  

$$\rightarrow \mu \rightarrow e$$

CT = Cherenkov Threshold

# **Original Baseline Cuts**

|                           | 2                                                                                         | Reπ                  | 2Re                        | π1de                  |       | <u>.</u>        |            |           |                          |       |  |  |
|---------------------------|-------------------------------------------------------------------------------------------|----------------------|----------------------------|-----------------------|-------|-----------------|------------|-----------|--------------------------|-------|--|--|
| FCFV                      | evclass==<br>fqwall_2F                                                                    | =1 && evis>3<br>≀>50 | 0 && nhitac<               | 16 &&                 |       | large           | e efficien | cy loss a | t 2-ring c               | ut    |  |  |
| 2 rings                   | fqmrnring                                                                                 | [0]==2               |                            |                       |       |                 |            |           |                          |       |  |  |
| eπ-like                   | (fqmrpid[0][0]==11 && fqmrpid[0][1]==211)   <br>(fqmrpid[0][0]==211 && fqmrpid[0][1]==11) |                      |                            |                       |       |                 |            | FON       | $I = \frac{S}{\sqrt{S}}$ |       |  |  |
| 0 decay e                 | fqnse==1                                                                                  |                      | fqnse==2                   |                       |       |                 |            |           | $\sqrt{S}$ +             | В     |  |  |
| E <sub>rec</sub> < 1.5GeV | 1.5GeV nuErec_2repi( $p_e, p_{\pi}$ )<1.5                                                 |                      |                            |                       |       |                 |            |           |                          |       |  |  |
| (neutrino beam            | mode, norm                                                                                | al mass hiera        | archy, $\delta_{cp} = 0$ , | 10 <sup>21</sup> POT) |       |                 |            |           |                          |       |  |  |
|                           |                                                                                           |                      | 2Reπ                       |                       |       |                 |            |           |                          |       |  |  |
| cut                       | true<br>1e1π⁺ <sup>⊬</sup>                                                                | other                | purity                     | efficiency            | FOM   | true<br>1e1π⁺′- | other      | purity    | efficiency               | FOM   |  |  |
| FCFV                      | 13.08                                                                                     | 693.36               | 1.9%                       |                       |       | 13.08           | 693.36     | 1.9%      |                          |       |  |  |
| 2 rings                   | 5.24                                                                                      | 169.12               | 3.0%                       |                       |       | 5.24            | 169.12     | 3.0%      |                          |       |  |  |
| eπ-like                   | 3.87                                                                                      | 14.57                | 21.0%                      |                       |       | 3.87            | 14.57      | 21.0%     |                          |       |  |  |
| 0 decay e                 | 1.27                                                                                      | 6.27                 | 16.9%                      |                       |       | 2.47            | 5.76       | 30.1%     |                          |       |  |  |
| E <sub>rec</sub> <1.5GeV  | 0.71                                                                                      | 3.10                 | 18.5%                      | 27.5%                 | 0.362 | 1.75            | 2.15       | 45.0%     | 34.9%                    | 0.888 |  |  |

- "true 1e1π<sup>+/-</sup>" events with one electron and one charged pion (above Cherenkov threshold + 30 MeV/c momentum), counted using the VCWORK stack where the pion must be flagged "to chase"
- Efficiency calculated relative to number of visible events in FCFV, with E<sub>rec</sub><1.5 GeV, separated into 1 sub-event and 2 subevent samples



• Plot of fqmrnring[0] for true  $1e1\pi^{+/-}$  events

- FCFV events, as well as events passing specific selections, are shown
- Lots of 1e1 $\pi$ <sup>+/-</sup> events are being reconstructed as 1-ring, 3-ring, and 4-ring events









## Improved eπ-like Cut

Added more "sub-samples" (fqmrpid[0][\*] = 1Re, 2Ree,  $2R\mu e$ ,  $3Re\pi\pi$ ) to 2-ring  $e\pi$ -like cut

old baseline

|     | true 1e1π <sup>+/-</sup> | other | purity | efficiency | FOM   | net purity | net eff. |
|-----|--------------------------|-------|--------|------------|-------|------------|----------|
| 0de | 0.71                     | 3.10  | 18.5%  | 27.5%      | 0.362 | 21 004     | 22 404   |
| 1de | 1.75                     | 2.15  | 45.0%  | 34.9%      | 0.888 | 31.9%      | 32.4%    |

### new baseline: $1Re + 2Re\pi + 2R\pi e + 2Ree + 2R\mu e + 3Re\pi\pi$

|     | true 1e1 $\pi^{+/-}$ | other | purity | efficiency | FOM   | net purity | net eff. |
|-----|----------------------|-------|--------|------------|-------|------------|----------|
| 0de | 0.70                 | 2.32  | 23.3%  | 27.4%      | 0.405 | 22.604     | 44.004   |
| 1de | 2.71                 | 4.73  | 36.4%  | 53.8%      | 0.992 | 32.0%      | 44.9%    |

```
net purity: 31.9\% \rightarrow 32.6\%
net efficiency: 32.4\% \rightarrow 44.9\%
```

"new baseline" cuts applied to each sub-sample:

```
b_1re = ( fqnse==2 && ( nll1re-nll1rmu < -200. || fq1rmom[0][1] > 80. ) && fq1rmom[0][1] > 40. && ( nll1re-nll2rpie
< -50. || fq1rmom[0][1] > 80. ) )
b_2repi = ( ( fqnse==2 ) || ( fqnse==1 && nll2repi-nll2rpie < -100. ) )
b_2rpie = ( ( fqnse==1 && fqmrmom[0][1] > 40. && fqmrmom[0][0] > 340. ) || ( fqnse==2 && fqmrmom[0][1] > 40. ) )
b_2ree = ( fqnse==2 && ( nll2ree-nll1rmu > -1000. && fqpi0mass[0] < 140. ) && ( nll2ree-nll2repi > -150. ) )
b_2rmue = ( fqnse==2 && ( fqmrmom[0][0] < 200. || nll2rmue-nll1rmu < -500. ) && ( nll2rmue-nll2repi > -100. ) )
```

### 18-08-22

### T2K-SK Pre-Meeting

red = 1de only

# Using BDTs

- Rather than adding sub-samples and cutting on each one by eye, use BDT
  - I've experimented with BDTs previously, but BDT input at the time was just the old baseline events (with poor efficiency)
- Two separate BDTs: 0 decay e, 1 decay e
- Start with sub-samples on previous slide as input to BDT
  - try to add more sub-samples, or otherwise generally expand efficiency of input
- Goal is to improve efficiency of BDT input such that the FOM can be improved

# **BDT** Trials

- Preliminary cuts:
  - <u>FCFV</u>
  - possible 2Repi
    - <u>v1</u>:
      - 0 de: i2repi==0 || i2rpie==0 || i3repipi==0
      - 1 de: ( i1re==0 && !Is1re && !Is1re1de ) || i2ree==0 || i2repi==0 || i2rpie==0 || i2rmue==0 || i3repipi==0
    - <u>v2</u>:
      - 0 de: i2repi==0 || i2rpie==0 || i3repipi==0 || i4reepi==0 || i4reepie==0 || i4reepipi==0 || i4repipie==0 || i4repipie==0
      - 1 de: ( i1re==0 && !Is1re && !Is1re1de ) || i2ree==0 || i2repi==0 || i2rpie==0 || i2rmue==0 || i3repipi==0 || i4repipipi==0
    - <u>v3</u>:
      - 0 de: i2repi==0 || i2rpie==0 || i3reee==0 || i3reepi==0 || i3repie==0 || i3repipi==0
      - 1 de: ( i1re==0 && !Is1re && !Is1re1de ) || i2ree==0 || i2repi==0 || i2rpie==0 || i2rmue==0 || i3repipi==0
  - <u>1/2 sub-events</u>
    - separate samples
  - <u>E<sub>rec</sub>(1e,1π) < 1.5 GeV</u>
- v1 uses same sub-samples as the new baseline
- For each version, compared performance with different combinations of BDT variables

# BDT Results (0 decay e)

|      |       | v1 (input efficiency: 30.1% 0de) |      |        |       |       | v2 (input efficiency: 34.2% 0de) |      |        |       |       | v3 (input efficiency: 43.4% 0de) |      |        |       |       |
|------|-------|----------------------------------|------|--------|-------|-------|----------------------------------|------|--------|-------|-------|----------------------------------|------|--------|-------|-------|
|      | Trial | Signal                           | Bkgd | Purity | Eff   | FOM   | Signal                           | Bkgd | Purity | Eff   | FOM   | Signal                           | Bkgd | Purity | Eff   | FOM   |
| 2Reπ | 1     | 0.53                             | 0.95 | 36.0%  | 20.8% | 0.439 |                                  |      |        |       |       |                                  |      |        |       |       |
|      | 2     | 0.55                             | 0.70 | 44.1%  | 21.4% | 0.493 |                                  |      |        |       |       |                                  |      |        |       |       |
|      | 3     | 0.59                             | 0.62 | 48.7%  | 22.9% | 0.535 |                                  |      |        |       |       |                                  |      |        |       |       |
|      | 4     | 0.55                             | 0.51 | 52.1%  | 21.5% | 0.537 |                                  |      |        |       |       |                                  |      |        |       |       |
|      | 5     | 0.51                             | 0.33 | 61.1%  | 20.0% | 0.560 |                                  |      |        |       |       | 0.42                             | 0.26 | 61.7%  | 16.5% | 0.511 |
|      | 6     |                                  |      |        |       |       | 0.56                             | 0.49 | 53.1%  | 21.8% | 0.545 | 0.43                             | 0.28 | 61.1%  | 16.8% | 0.513 |
|      | 7     | 0.56                             | 0.39 | 58.8%  | 21.8% | 0.574 | 0.47                             | 0.25 | 64.7%  | 18.2% | 0.549 | 0.48                             | 0.36 | 57.1%  | 18.5% | 0.521 |
|      | 8     | 0.56                             | 0.41 | 58.0%  | 21.8% | 0.570 | 0.54                             | 0.38 | 58.6%  | 20.9% | 0.561 | 0.49                             | 0.34 | 59.5%  | 19.2% | 0.541 |
|      | 9     |                                  |      |        |       |       | 0.59                             | 0.59 | 49.9%  | 22.9% | 0.542 |                                  |      |        |       |       |

### <u>Variables</u>

- 1) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll
- 2) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 1R+2R kinematics
- 3) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll
- 4) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll
- 5) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics
- 6) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics, 3R v 4R nll
- 7) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics,  $E_{rec}$ , towall e, towall  $\pi$ ,  $p_{low}$ ,  $m_{\pi^0}$
- 8) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics,  $E_{rec}$ , towall e, towall  $\pi$ ,  $p_{low}$ ,  $m_{\pi 0}$ , fit indices of 1R, 2R, and 3R fits
- 9) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics,  $E_{rec}$ , towall e, towall  $\pi$ ,  $p_{low}$ ,  $m_{\pi 0}$ , fit indices of 1R, 2R, and 3R fits, 3R v 4R nll

- Note that missing 3-ring and 4-ring nlls are padded with 0
- v1 gives the best performance, despite having the lowest input efficiency
- Despite adding MR fit indices to v2 and v3 (trials 8 and 9), they are still unable to out-perform v1 without indices

# BDT Results (1 decay e)

|      |       |        | <b>v1</b> (input e | fficiency: 3 | <b>30.1%</b> Ode) | )     | v2 (input efficiency: 34.2% 0de) |      |        |       |       |  |
|------|-------|--------|--------------------|--------------|-------------------|-------|----------------------------------|------|--------|-------|-------|--|
|      | Trial | Signal | Bkgd               | Purity       | Eff               | FOM   | Signal                           | Bkgd | Purity | Eff   | FOM   |  |
| 2Reπ | 1     | 2.31   | 2.46               | 48.4%        | 45.9%             | 1.056 |                                  |      |        |       |       |  |
|      | 2     | 2.22   | 1.66               | 57.2%        | 44.2%             | 1.127 |                                  |      |        |       |       |  |
|      | 3     | 2.54   | 2.69               | 48.5%        | 50.5%             | 1.110 |                                  |      |        |       |       |  |
|      | 4     | 2.50   | 2.47               | 50.4%        | 49.8%             | 1.123 |                                  |      |        |       |       |  |
|      | 5     | 2.44   | 1.85               | 56.8%        | 48.5%             | 1.177 |                                  |      |        |       |       |  |
|      | 6     |        |                    |              |                   |       | 2.23                             | 1.56 | 58.9%  | 44.4% | 1.146 |  |
|      | 7     | 2.39   | 1.72               | 58.1%        | 47.6%             | 1.179 | 2.07                             | 1.07 | 66.0%  | 41.3% | 1.170 |  |
|      | 8     | 2.32   | 1.43               | 61.8%        | 46.1%             | 1.197 | 2.33                             | 1.67 | 58.3%  | 46.4% | 1.166 |  |
|      | 9     |        |                    |              |                   |       | 2.24                             | 1.90 | 56.0%  | 48.2% | 1.165 |  |

#### <u>Variables</u>

- 1) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll
- 2) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 1R+2R kinematics
- 3) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll
- 4) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll
- 5) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics
- 6) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics, 3R v 4R nll
- 7) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics,  $E_{rec}$ , towall e, towall  $\pi$ ,  $p_{low}$ ,  $m_{\pi 0}$ , d2se
- 8) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics,  $E_{rec}$ , towall e, towall  $\pi$ ,  $p_{low}$ ,  $m_{\pi 0}$ , d2se, fit indices of 1R, 2R, and 3R fits
- 9) 1R v 1R nll, 1R v 2R nll, 2R v 2R nll, 2R v 3R nll, 3R v 3R nll, 1R+2R kinematics,  $E_{rec}$ , towall e, towall  $\pi$ ,  $p_{low}$ ,  $m_{\pi 0}$ , d2se, fit indices of 1R, 2R, and 3R fits, 3R v 4R nll

- Note that missing 3-ring and 4ring nlls are padded with 0
- for 1 decay e sample, v3 is identical to v1 so it is not shown
- As with the 0 decay e sample, v1 gives the best performance

## **BDT Architecture**

- Previous slides used BDT parameters of MaxDepth=3 and NTrees=850
- How dependent is BDT performance on these parameters?
  - There are a number of other BDT parameters that the user can specify in TMVA
- Grid search across MaxDepth and NTrees to examine FOM dependence

### **BDT Grid Search Results**

# Thoughts and Future Work

- Final attempt to increase efficiency of BDT input using loose cuts
  - different approach than adding sub-samples
- Dependence of BDT on random seed?
- Move towards focusing on systematic uncertainties

# Backup

- baseline detailed cutflow (old and new)
- neut modes of "true  $1e1\pi^{+/-}$ " events
- Purity/efficiency plots for each sub-sample
- ROC curves for BDTs
- Reconstruction metrics (E<sub>res</sub>, p<sub>res</sub>, etc.)