Weekly Meeting

Feb $14^{\text {th }} 2018$

Meeting with Amy

- Goal is do have a rough estimate of the time it will take to produce noisePSDs from noise traces
- There is currently a limit set to 5 min , check to see if code (in serial) can produce noisePSDs within this time. If not, may need to parallelize the code
- There are 3 things that need to be accounted for:
- Trace length (need SNOLAB trace length)
- Number of channels for SNOLAB detectors
- Adjusting for processor speed

Meeting with Amy

- I can use traces from UMN or SLAC, but they may not be the right length (check with Scott/Bill)
- Even if they aren't the right length, it wouldn't be a bad idea to see how runtime scales with trace length
- Amy suggested using a program called Valgrind, which can isolate the code from the rest of the programs running on the processor
- They may already be a compiled version of CDMSBats on UMN computers with Valgrind enabled.
- Timescale is mid-March

Trigger Burst Cut

- After talking with Noah, we have come up with a new way to apply the trigger bursts cut making use of expected trigger rates and Poisson distribution.
- If the expected trigger rate is Γ, and I take a sample over a time of t, then I would expect Γt events. If the data was a perfect Poisson distribution, then I would have a distribution of mean Γt and standard deviation $\sqrt{\Gamma t}$.

Trigger Burst Cut

- In terms of trigger rate, this would mean we expect a mean trigger rate of Γ and a standard deviation of $\sigma=\frac{\sqrt{\Gamma t}}{t}$. We can then apply a 3σ cut.
- To determine the length of t (bin size), we use the following constraint: we require $m *(\sigma t)=n * \Gamma t$. This leads to: $t=\frac{m^{2}}{n^{2} \Gamma}$. For $m=7$ and $n=2$ and $\Gamma=5, t=2.45 \mathrm{~s}$

Trigger Burst Cut

- We extended this method further by allowing for variation in mean trigger rate \rightarrow using mean trigger rate μ instead of Γ.
- We do this by using the method previously described to determine trigger rates, and then remove obvious outliers (8σ). We also split the data into time segments $\sim 10 \mathrm{~min}$. We then calculate the mean trigger rate μ, and use that value to determine bin size t^{*} and σ^{*}. The cuts are then $\mu \pm 3 \sigma^{*}$.
- This way, the bin sizes and cuts are recalculated for every 10 min of data.
- There is also a 10 Hz hard cut applied.

IP [y]: Notebook TriggerBurstCut Last Cheokpoint: Feb 12 17:07 (autosaved)

File			View		Inser		Cell		Kerne	H			
回	(88	C)	\square	\uparrow	\downarrow	\checkmark	-	C	Code	J Cell Toolbar:	None	-

IP [y]: Notebook TriggerBurstCut Last Cheockpont: Feb 12 17:07 (autosaved)
File Edit View Insert Cell Kernel Help
\beth Cell Toolbar: None \quad I
plt.show()

In [19]:

IP $[y]$: Notebook TriggerBurstCut Last Checkpoint: Feb 12 17:07 (autosavea) - Cell Toolbar: None
\beth

plt.show()

In [19]:
In []:
In []:
In []:

IP [y]: Notebook TriggerBurstCut Last Checeponit: Feb 12 17:07 (unsaved changes)
File Edit View Insert Cell Kernel Help
\qquad I Cell Toolbar: None 〕
plt.show()

In [19]:

IP [y]: Notebook TriggerBurstCut Last Checkpoint: Feb 12 17:07 (unsaved changes)
(1) 0

ax.set_ylavert lverti nate luartiss, ax.text(0.2*xplotmax, 0.8^{*} max (event_rate),"Livetime Lost $=\% S^{\prime \prime} \%$ livetime)
plt.show()

In [19]:
In []:
In []:
In []:

