Weekly Meeting

Feb 14th 2018

Meeting with Amy

- Goal is do have a rough estimate of the time it will take to produce noisePSDs from noise traces
- There is currently a limit set to 5 min, check to see if code (in serial) can produce noisePSDs within this time. If not, may need to parallelize the code
- There are 3 things that need to be accounted for:
 - Trace length (need SNOLAB trace length)
 - Number of channels for SNOLAB detectors
 - Adjusting for processor speed

Meeting with Amy

- I can use traces from UMN or SLAC, but they may not be the right length (check with Scott/Bill)
 - Even if they aren't the right length, it wouldn't be a bad idea to see how runtime scales with trace length
- Amy suggested using a program called Valgrind, which can isolate the code from the rest of the programs running on the processor
 - They may already be a compiled version of CDMSBats on UMN computers with Valgrind enabled.
- Timescale is mid-March

Trigger Burst Cut

- After talking with Noah, we have come up with a new way to apply the trigger bursts cut – making use of **expected** trigger rates and Poisson distribution.
- If the expected trigger rate is Γ , and I take a sample over a time of t, then I would expect Γt events. If the data was a perfect Poisson distribution, then I would have a distribution of mean Γt and standard deviation $\sqrt{\Gamma t}$.

Trigger Burst Cut

- In terms of trigger rate, this would mean we expect a mean trigger rate of Γ and a standard deviation of $\sigma = \frac{\sqrt{\Gamma t}}{t}$. We can then apply a 3σ cut.
- To determine the length of t (bin size), we use the following constraint: we require $m * (\sigma t) = n * \Gamma t$. This leads to: $t = \frac{m^2}{n^2 \Gamma}$. For m = 7 and n = 2 and $\Gamma = 5$, t = 2.45 s

Trigger Burst Cut

- We extended this method further by allowing for variation in mean trigger rate \rightarrow using mean trigger rate μ instead of Γ .
- We do this by using the method previously described to determine trigger rates, and then remove obvious outliers (8 σ). We also split the data into time segments ~10 min. We then calculate the mean trigger rate μ , and use that value to determine bin size t^* and σ^* . The cuts are then $\mu \pm 3\sigma^*$.
- This way, the bin sizes and cuts are recalculated for every 10 min of data.
- There is also a 10Hz hard cut applied.

TriggerBurstCut Last Checkpoint: Feb 12 17:07 (autosaved)

In [19]:

In []:

In []:

Tn []: