Weekly Meeting

Feb 14t 2018



Meeting with Amy

* Goal is do have a rough estimate of the time it will take to produce
noisePSDs from noise traces

* There is currently a limit set to 5 min, check to see if code (in serial)
can produce noisePSDs within this time. If not, may need to
parallelize the code

* There are 3 things that need to be accounted for:
* Trace length (need SNOLAB trace length)
* Number of channels for SNOLAB detectors
 Adjusting for processor speed



Meeting with Amy

* | can use traces from UMN or SLAC, but they may not be the right
length (check with Scott/Bill)
* Even if they aren’t the right length, it wouldn’t be a bad idea to see how
runtime scales with trace length

* Amy suggested using a program called Valgrind, which can isolate the
code from the rest of the programs running on the processor

* They may already be a compiled version of CDMSBats on UMN computers
with Valgrind enabled.

 Timescale is mid-March



Trigger Burst Cut

* After talking with Noah, we have P(X)

come up with a new way to ] ‘Y
apply the trigger bursts cut — 0.257 /

making use of expected trigger ] / \

rates and Poisson distribution. 09

* If the expected trigger rate is T, ]
and | take a sample over a time 0.15-
of t, then | would expect I't ] \
events. If the data was a perfect ]
Poisson distribution, then | 0.1 / \

would have a distribution of ]
mean I't and standard deviation 0.057

VTt.

I't



Trigger Burst Cut

* In terms of trigger rate, this would mean we expect a mean trigger

rate of I' and a standard deviation of 0 = ? We can then apply a 30

cut.

* To determine the length of t (bin size), we use the following
2

constraint: we require m * (ot) = n x 't . This leads to: t = % For
m=7andn=2and['=5,t=245s



Trigger Burst Cut

* We extended this method further by allowing for variation in mean
trigger rate = using mean trigger rate u instead of I'.

* We do this by using the method previously described to determine
trigger rates, and then remove obvious outliers (8ag). We also split the
data into time segments ~10 min. We then calculate the mean trigger

rate u, and use that value to determine bin size t™ and ¢™. The cuts
are then u + 307.

* This way, the bin sizes and cuts are recalculated for every 10 min of
data.

* There is also a 10Hz hard cut applied.
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