Weekly Meeting

Feb 14t 2018

Meeting with Amy

* Goal is do have a rough estimate of the time it will take to produce
noisePSDs from noise traces

* There is currently a limit set to 5 min, check to see if code (in serial)
can produce noisePSDs within this time. If not, may need to
parallelize the code

* There are 3 things that need to be accounted for:
* Trace length (need SNOLAB trace length)
* Number of channels for SNOLAB detectors
 Adjusting for processor speed

Meeting with Amy

* | can use traces from UMN or SLAC, but they may not be the right
length (check with Scott/Bill)
* Even if they aren’t the right length, it wouldn’t be a bad idea to see how
runtime scales with trace length

* Amy suggested using a program called Valgrind, which can isolate the
code from the rest of the programs running on the processor

* They may already be a compiled version of CDMSBats on UMN computers
with Valgrind enabled.

 Timescale is mid-March

Trigger Burst Cut

* After talking with Noah, we have P(X)

come up with a new way to] ‘Y
apply the trigger bursts cut — 0.257 /

making use of expected trigger] / \

rates and Poisson distribution. 09

* If the expected trigger rate is T,]
and | take a sample over a time 0.15-
of t, then | would expect I't] \
events. If the data was a perfect]
Poisson distribution, then | 0.1 / \

would have a distribution of]
mean I't and standard deviation 0.057

VTt.

I't

Trigger Burst Cut

* In terms of trigger rate, this would mean we expect a mean trigger

rate of I' and a standard deviation of 0 = ? We can then apply a 30

cut.

* To determine the length of t (bin size), we use the following
2

constraint: we require m * (ot) = n x 't . This leads to: t = % For
m=7andn=2and['=5,t=245s

Trigger Burst Cut

* We extended this method further by allowing for variation in mean
trigger rate = using mean trigger rate u instead of I'.

* We do this by using the method previously described to determine
trigger rates, and then remove obvious outliers (8ag). We also split the
data into time segments ~10 min. We then calculate the mean trigger

rate u, and use that value to determine bin size t™ and ¢™. The cuts
are then u + 307.

* This way, the bin sizes and cuts are recalculated for every 10 min of
data.

* There is also a 10Hz hard cut applied.

TriggerBurstCut Last Checkpoint: Feb 12 17:07 (autosaved)

IPLyl: Notebook

Help

Kernel

-~

Insert

'3' \‘l\lr

Edit Vi

File

j Cell Toolbar: | None

a2 v+ P B C cCode

o
3

Q |

E

in sizes. Series 180122 1110

bi

Varying

16000

14000

12000

10000

8000

6000

4000

2000

Time (s)

Event Rate (Counts/s)

|
Bfficienay = 0.977818181818 |

0.0101500958948

Uivetime Lost
| I
| I
! I
| I
[—|

o7

5000

=1 (=1 (=] o O.U B M~ W W m M N e

(=] (=] (=} (=]

= = = =1 (5/51UN03) 338y W2A]
s)uno)

(=]

13000

10000

16000

12000

8000

6000

4000

2000

Time (s)

In [19]:

I P [Y] . N O t e b 00 k TriggerBu rstCut Last Checkpoint: Feb 12 17:07 (autosaved)

File Edit View Insert Cell Kernel Help 0]

Ollsc B B/ 2+ + > B C coe +| Cell Tookar: | None M

WA T CCR CU T & AP LU CIIURA j U7 O IOA (o VCiTe_ TWosf; CLvo Come Cos T = o> VYL e

plt.show()

Varying bin sizes. Series 180125_1742

700

Counts

800 1000 1200 1400
Time (s)

2000

1500

Counts

1000

0 10 20 30 40 50
Event Rate (Counts/s)

70} Efficiency = 0.2069
Livetime Lost = 0.184212704181

Event Rate (counts/s)
&

0 200 400 600 BOO 1000 1200 1400
Time (s) 4

In [19]:

In [1:

IP[yl: Notebook

File

B ©

In [19]:

Edit

View Insert Cell Kernel

& GO B4+ > B C

OALSCTL_YyLtauc Ly LVCITC nals (CUUTCSy ST 7

Code

Help

TriggerBurstCut Last checkpoint: Feb 12 17:07 (autosaved)

j Cell Toclbar: | None j

ax.text(0.2*xplotmax,0.9*max(event_rate), "Efficiency = %s" %eff)
ax.text(0.2*xplotmax,0.8*max (event_rate), "Livetime Lost = %s" %livetime)

plt.show()

120

100

Counts

Counts

3000

2500

2000 |

1500

1000

Event Rate (counts/s)

500

=OH e N
s hBR &R

0

Varying bin sizes. Series 180125_1808

1000
Time (s}

20 25
Event Rate {Counts(s)

Efficiency = 0.8943 |

Livetime Lost = 0.0367336524564

B PN o T Ao A, ST

SR 5 T PRt O T

0

™
.

. .
500

1000
Time {5}

1500

I P [y] N O t Eboo k TriggerBurstCut Last Checkpoint: Feb 12 17:07 (unsaved changes)

File

B Q@ = @& B 4 v » B C coe

In [19]:

In [1:

Edit

View Insert Cell Kernel Help

j Cell Toolbar: | None j

WA T CCR CU T & AP LU CIIURA j U7 O IOA (o VCiTe_ TWosf; CLvo Come Cos T = o> VYL e

plt.show()

Counts

Varying bin sizes. Series 180119_2057

50

Counts

30

20

10

Time (s)

7000

6000
5000
4000
3000
2000

1000

15

Event Rate (Counts/s)

25

]
]
Efficiency = 0.176725
Livetime Lost f 0.110662435727

Event Rate (counts/s)

I P [YJ. Not e b OO k TriggerBurstCut Last Checkpoint: Feb 12 17:07 (unsaved changes)

File Edit Wiew Insert Cell Kernel Help (@]

© x M B 4 ¢ > B C Coe hE

OALSCTL_YyLtauc Ly LVCITC nals (CUUTCSy ST 7

sell Toolbar: | None j

ax.text(0.2*xplotmax,0.9*max(event_rate), "Efficiency = %s" %eff)
ax.text(0.2*xplotmax,0.8*max (event_rate), "Livetime Lost = %s" %livetime)

plt.show()

600 T

Varying bin sizes. Series 180210_0107
T T

[
|
|
|
|
|
|
|
|
|
|
|
|
—

L
o 2000 4000 6000 8000 10000

Time (s}

20000 T T

15000 8

10000 1

Counts

5000 1

o 20 40 60 80 100 120
Event Rate {Counts/s)
|

=
R
=]

T T T T T
Erﬁ,Eiency = 0.48?53 !
Livetime Lost = 0.134776579775

i i i

=

=

=]
T

2

20

Event Rate (counts/s)
g

e e e e N e M) U] e e e e L B [S i e PRV T VL
o 2000 4000 G000 8000 10000
Time (s}

In [19]:

In [1:

In [1:

In [1:

T T 1:

