#### **Progress Update**

Trevor Towstego UofT Neutrino/DM Meeting June 13, 2018

# What are 2-ring $v_e^{}$ CC1 $\pi$ events being reconstructed as?

1-ring reco PID: true 2-ring  $v_e CC1\pi$ 



UofT Neutrino/DM Meeting

# What are 2-ring $v_e^{}$ CC1 $\pi$ events being reconstructed as?

2-ring reco PID: true 2-ring  $v_e CC1\pi$ 



# What are 2-ring $v_e^{}$ CC1 $\pi$ events being reconstructed as?

3-ring reco PID: true 2-ring  $v_e CC1\pi$ 



# Expanding the $2\text{Re}\pi$ selection

- Looked at likelihood ratios of 2Re $\pi$ , 2R $\pi e$ , 1Re, 2Ree, 3Reee, and 3Re $\pi\pi$ 
  - only for events passing their respective event selection
    - i.e. only plot 2Ree likelihoods for events where fqmrpid[0][\*] corresponds to a 2Ree fit
  - For some samples, only the 0de or the 1de case was considered
    - depending on the potential efficiency and the initial purity
- Looked at each selection separately, and tried to develop rejection requirements to isolate true  $1\text{e}1\pi$  events

# Baseline (2Reπ + 2Rπe)

- All event numbers shown have the following cuts applied:
  - FCFV
  - $e\pi$  cut (the cut being evaluated and modified)
  - 0/1 decay e
  - $E_{rec} < 1.5 \text{ GeV}$ 
    - Based on either  $2Re\pi$  or  $2R\pi e$  reconstruction (whichever has lower index in MR fitter)

|     | FOM   | true 1e1 $\pi$ | other | purity | eff.   | net purity | net eff. |
|-----|-------|----------------|-------|--------|--------|------------|----------|
| 0de | 0.652 | 1.41           | 3.50  | 28.8%  | 9.06%  | 46.0206    | 04 550/  |
| 1de | 1.145 | 3.51           | 2.27  | 60.7%  | 22.49% | 40.03%     | 31.33%   |

Note: efficiency is calculated with the denominator equal to the total number of true  $1e1\pi^{+/-}$  events in FCFV with  $E_{v} < 1.5$  GeV and with 1 or 2 sub-events (summed together)

## $2Re\pi$ only

|     | FOM   | true 1e1π | other | purity | eff.   | net purity | net eff. |
|-----|-------|-----------|-------|--------|--------|------------|----------|
| 0de | 0.675 | 1.27      | 2.51  | 33.6%  | 8.16%  | E4 4004    | 00 470/  |
| 1de | 1.205 | 3.32      | 1.33  | 71.5%  | 21.31% | 54.49%     | 29.41%   |

### $2R\pi e$ only

|     | FOM   | true 1e1 $\pi$ | other   | purity | eff.  | net purity | net eff. |
|-----|-------|----------------|---------|--------|-------|------------|----------|
| 0de | 0.125 | 0.14           | 0.99    | 12.4%  | 0.90% | 14 2504    | 2.07%    |
| 1de | 0.144 | 0.18           | 0.94    | 16.3%  | 1.18% | 14.35%     |          |
|     | fqmı  | cmom[0][1      | ] > 40. |        |       |            |          |
|     | FOM   | true 1e1 $\pi$ | other   | purity | eff.  | net purity | net eff. |
| 0de | 0.156 | 0.12           | 0.45    | 21.9%  | 0.80% | 28 200%    | 1.070/   |
| 1de | 0.204 | 0.17           | 0.30    | 35.9%  | 1.07% | 20.2070    | 1.0770   |





# 1Re only

|                                          | FOM                                          | true 1e1 $\pi$                     | other                  | purity               | eff.                 | net purity | net eff. |
|------------------------------------------|----------------------------------------------|------------------------------------|------------------------|----------------------|----------------------|------------|----------|
| 0de                                      | 1.399                                        | 0.67                               | 24.50                  | 2.7%                 | 4.30%                | 6 200/     |          |
| 1de                                      | 0.726                                        | 1.44                               | 6.48                   | 18.2%                | 9.25%                | 0.38%      | 13.54%   |
| fqnse==<br>fq1rmor<br>( nll11<br>( nll11 | =2 &&<br>n[0][1] ><br>re-nll1rn<br>re-nll2rp | > 40. &&<br>nu < -200<br>pie < -50 | ).    fq1<br>).    fq1 | rmom[0][<br>rmom[0][ | 1] > 80.<br>1] > 80. | ) &&<br>)  |          |
|                                          | FOM                                          | true 1e1 $\pi$                     | other                  | purity               | eff.                 | net purity | net eff. |
| 0de                                      |                                              |                                    |                        |                      |                      | 20.06%     | 8 800%   |
| 1de                                      | 0.882                                        | 1.39                               | 3.23                   | 30.1%                | 8.89%                | 30.00%0    | 0.0970   |

Note: 1Re-like events that pass 1Re and 1Re1de selections are not included in this 1Re sample



18-06-13

UofT Neutrino/DM Meeting

0.9 0.8

0.7

0.6 0.5

0.4

0.3 0.2

0.1

0

1.2

0.8

0.6

0.4

0.2

0

800

# 2Ree only

|                               | FOM                           | true 1e1π              | other               | purity   | eff.     | net purity | net eff. |
|-------------------------------|-------------------------------|------------------------|---------------------|----------|----------|------------|----------|
| 0de                           | 0.365                         | 0.41                   | 64.16               | 0.6%     | 2.65%    | 1.070/     | C 000(   |
| 1de                           | 0.246                         | 0.56                   | 5.93                | 8.6%     | 3.59%    | 1.37%      | 0.23%    |
| fqnse==<br>( nll2:<br>( nll2: | =2 &&<br>ree-nll1<br>ree-nll2 | rmu > -10<br>repi > -1 | )00. && f<br>.50. ) | qpi0mass | [0] < 14 | 0.) & &    | rink off |
|                               | FOM                           | true 1e1 $\pi$         | other               | purity   | eff.     | net purity | net eff. |
| 0de                           |                               |                        |                     |          |          | 29 60%     | 1 00%    |
| 1de                           | 0.282                         | 0.16                   | 0.37                | 29.6%    | 1.00%    | 23.0070    | 1.0070   |

 $nll_{2Ree}$ -nll<sub>1Ru</sub> vs m<sub>x0</sub> : 2Ree-like, 2-ring v<sub>e</sub> CC1 $\pi$  (1de only)







# $3Re\pi\pi$ only

|     | FOM                 | true 1e1 $\pi$           | other         | purity          | eff.                 | net purity          | net eff.        |
|-----|---------------------|--------------------------|---------------|-----------------|----------------------|---------------------|-----------------|
| 0de | 0.151               | 0.17                     | 0.43          | 28.1%           | 1.08%                | 24 770/             | 2 0104          |
| 1de | 0.282               | 0.43                     | 0.68          | 38.4%           | 2.73%                | 34.77%              | 3.81%           |
|     | nll3renini.         | -nll2reni                | > _800        | L f am am am    | [0][0]*1             | 6.0                 |                 |
|     | птотсртрт           | 111121661                | 000.          |                 | [0][0] "1            | . 60                |                 |
|     | FOM                 | true 1e1π                | other         | purity          | eff.                 | net purity          | net eff.        |
| 0de | <b>FOM</b><br>0.134 | <b>true 1e1π</b><br>0.07 | other<br>0.11 | purity<br>37.6% | <b>eff.</b><br>0.43% | • 6 0<br>net purity | <b>net eff.</b> |

## **3Reee only**

|     | FOM   | true 1e1π | other | purity | eff.  | net purity | net eff. |
|-----|-------|-----------|-------|--------|-------|------------|----------|
| 0de | 0.715 | 0.42      | 6.29  | 6.3%   | 2.70% | 5 500/     | 0.000/   |
| 1de | 0.102 | 0.06      | 1.94  | 3.0%   | 0.38% | 5.52%      | 3.08%0   |

Difficult to see any separation of signal and background in likelihood ratio plots!

# Putting it all together

#### baseline

|     | FOM   | true 1e1π | other | purity | eff.   | net purity | net eff. |
|-----|-------|-----------|-------|--------|--------|------------|----------|
| 0de | 0.652 | 1.41      | 3.50  | 28.8%  | 9.06%  | 40.000/    | 04 550/  |
| 1de | 1.145 | 3.51      | 2.27  | 60.7%  | 22.49% | 40.03%     | 31.33%   |

#### $2Re\pi + 2R\pi e + 1Re + 2Ree + 3Re\pi\pi$

|     | FOM   | true 1e1π | other | purity | eff.   | net purity | net eff. |
|-----|-------|-----------|-------|--------|--------|------------|----------|
| 0de | 0.698 | 1.46      | 3.07  | 32.3%  | 9.38%  |            | 10 110/  |
| 1de | 1.543 | 5.26      | 5.34  | 49.6%  | 33.72% | 44.43%0    | 43.11%   |

Efficiency improved from  $31.5\% \rightarrow 43.1\%$ Purity decreased from  $46.0\% \rightarrow 44.4\%$ 

### Next Steps

- Investigate 2Rµe, 3Ree $\pi$ , and 3Re $\pi e$  samples as well
- Starting to develop BDT framework