

$\nu_{\rm e}$ CCQE/CC1 $\pi^{\scriptscriptstyle +}$ Selection Studies

Trevor Towstego $v_e CCQE/CC1\pi^+$ Meeting December 12, 2019

New $\nu_{_{e}}$ CCQE Sample

- Updated "intersection" plots comparing old vs. new v_e CCQE samples

1.51×10 ²¹ POT					
osc. v_e / \overline{v}_e CC	other				
42.64	15.11				
1e	not 1e				
50.92	6.82				

Old vs. New Comparison

1.51×10 ²¹ POT	osc v _e /v _e CC	int $v_{e}^{I} \overline{v}_{e}^{I} CC$	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	NC
old sample	40.17	8.14	0.27	4.26
new sample	42.43	8.90	0.17	5.55

nue CCQE/CC1pi+ Meeting

Old vs. New: Intersections

- Top left: rejected by old, selected by new Plots on following slides
- Top right: rejected by both samples
- Bottom left: selected by both samples
- Bottom right: selected by old, rejected by new

nue CCQE/CC1pi+ Meeting

Reconstructed π^0 Mass

250

250

Reconstructed $\cos(\theta_{ee})$

န္ 0.:

Even

Number

ъ_{0.}

0.3

0.2

0.1

2.006

8.005

₽.004

0.003

0.002

0.001

0<u></u>

Ever

ber

Reconstructed v Energy

Events Events

등 0.3

Number Number

0.2

0.15

0.1

0.05

8.006 Even

ð.005

under 1997

0.003

0.002

0.001

0ľ

0.2

Ъ

0.2

1e

1µ+other

stude EVents

°5 0.4

0.35 0.35

0.25

0.2

0.15 0.1

0.05

of Events

10.005 0,005 0,004

0.003

0.002

0.001

°

양

0.2 0.4 0.6 0.8

19-12-12

Revisiting E_{rec} Cut in 2-Ring v_e^{-1} CC1 π^+ Sample

- Concerns regarding π⁺ momentum dependence brought up at T2K CM in November
- Questions about why E_{rec} cut is needed
 - Originally implemented when doing cuts-based study to remove DIS backgrounds
 - This was years ago haven't revisited since
- Is this E_{rec} cut necessary, and could we reduce π⁺ momentum dependence by removing it?

(1.51×10²¹ POT) Efficiency FCFV 1e1^{#+} events Efficiency after 1-ring e/µ rejection Efficiency after E < 1.5 GeV cut Efficiency after BDT cut 0.8 0.6 1.5 0.4 1 0.2 0.5 1.2 0.2 1.4 1.6 1.8 0.4 0.6 0.8

True π^+ Momentum [GeV/c]

2-ring v_e CC1 π^+ : 1e1 π^+ Final State Events

π^+ Momentum Dependence Comparison

π^+ Momentum Dependence Comparison

Sample Comparison

1.51×10 ²¹ POT	1e	1e+1π⁺	1e+other	1μ	1µ+other	1π [±]	1 πº	other
Nominal	0.13	2.68	0.17	0.00	0.32	0.06	0.13	0.45
No E _{rec}	0.91	4.75	0.92	0.01	1.62	0.12	0.58	2.10

NEUT Mode

1.51×10 ²¹ POT	$v_{e}^{\prime}/\overline{v}_{e}^{\prime}$ CC QE	$\nu_{e}^{}/\overline{\nu}_{e}^{}$ CC 1 π^{\pm}	$v_{e}^{}/\overline{v}_{e}^{}$ CC other	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC QE	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC other	NC
Nominal	0.03	2.85	0.17	0.00	0.39	0.50
No E _{rec}	0.27	5.52	0.89	0.04	1.96	2.33

Neutrino Type

1.51×10 ²¹ POT	osc v _e /v _e CC	int $v_{e}^{\prime}/\overline{v}_{e}^{\prime}$ CC	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	NC
Nominal	2.32	0.73	0.40	0.50
No E _{rec}	3.32	3.36	2.00	2.33

- Nominal: E_{rec} cut applied to training sample and final sample
- <u>No E_{rec} </u>: No E_{rec} cut applied to training sample or final sample

BDT Comparison

NEUT Modes Comparison

Significantly more backgrounds from

- CC/NC DIS
- CC/NC multi-π

E_{rec} Comparison

Thoughts

- Training without E_{rec} cut but applying E_{rec} cut to final sample doesn't seem to reduce π^+ momentum dependence
- For both BDTs, not applying the $E_{\rm rec}$ cut to the final sample reduces π^+ momentum dependence
 - But, introduces more backgrounds

Backup

Detailed Cutflow: New v_e CCQE

Final State (FOM = 6.70)

1.51×10 ²¹ POT	1e	1e+1π⁺	1e+other	1μ	1µ+other	1π [±]	1 π⁰	other
All	89.05	17.68	32.36	420.74	587.88	63.65	146.50	855.79
FCFV	69.08	13.67	24.58	252.33	358.87	19.27	115.82	140.37
Not 1Rµ	69.03	13.66	24.58	34.84	341.03	13.82	115.78	138.99
0 decay e	63.68	3.77	15.52	6.71	55.82	6.20	110.67	60.91
E _{rec} < 1.25 GeV	53.81	2.67	6.24	2.57	9.40	6.14	105.27	37.47
BDT cut	50.65	0.97	0.33	0.06	0.03	0.04	4.42	0.57
NEUT Mode $(FOM = 5.98)$								
1.51×10 ²¹ POT	ν _e /ν _e CC	QE v _e /v	, CC 1π [±] ν	$\overline{\nu}_{e}$ CC other	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC QE	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC ot	her	NC
All		74 53	36 95	27.36	377 57	7	06.00	991 26

	14.00	00.00	21.00	011.01	100.00	551.20
FCFV	58.31	27.37	20.25	221.33	423.43	243.28
Not 1Rµ	58.27	27.34	20.25	33.60	375.83	236.42
0 decay e	57.44	12.36	12.28	9.73	58.39	173.06
E _{rec} < 1.25 GeV	48.00	8.96	4.92	3.64	9.72	148.33
BDT cut	45.18	4.75	1.41	0.11	0.06	5.55

Neutrino Type (FOM = 5.62)

1.51×10 ²¹ POT	osc v _e /v _e CC	int v _e /v _e CC	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	NC
All	83.57	55.26	1083.57	991.26
FCFV	64.00	41.93	644.76	243.28
Not 1Rµ	63.94	41.92	409.43	236.42
0 decay e	52.97	29.12	68.12	173.06
E _{rec} < 1.25 GeV	49.78	12.11	13.36	148.33
BDT cut	42.43	8.90	0.17	5.55

19