Progress Update

Trevor Towstego
UofT Neutrino/DM Meeting
September 12, 2018

TMVA memory issue resolved

- I was creating new branches for every event in the loop
 - fixed by moving the branch creating to the initialization phase before entering into the event loop
- Memory requirements are no longer an issue
- Previously, had split the TMVA input trees into 10 different files
 - this was because of previous memory issues when filling the trees
 - now only using 1 file, which results in a different splitting of events into training/testing
 - FOM results are a bit different due to statistical fluctuations, but I performed consistency checks to ensure that when training/testing events are split consistently, FOM remains the same
 - Brings in question (again) of error in FOM value

Statistical Error in FOM

- Is this approach correct?
 - uncertainty in signal = (sum of squared weights)^{1/2}
 - uncertainty in background = (sum of squared weights)^{1/2}
 - uncertainty in FOM is given by:

$$\delta \text{ FOM} = \sqrt{\left(\frac{\partial \text{ FOM}}{\partial S} \delta S\right)^2 + \left(\frac{\partial \text{ FOM}}{\partial B} \delta B\right)^2}$$

• I've estimated the error to be ~0.02 to 0.03, but have yet to do calculations with actual event weights (took the average weight, which underestimates the uncertainty)

BDT v0 trial 9 results

- Preliminary cuts:
 - FCFV
 - not 1Re/1Re1de
 - 1/2 sub-events
 - separate samples
 - $E_{rec}(1e,1\pi) < 1.5 \text{ GeV}$

v0 trial 9 (NTrees=1500, MaxDepth=5, MinNodeSize=0.5, nCuts=50)											
	Signal	Bkgd	Purity	Eff	FOM						
0 decay e	0.58	0.60	49.4%	30.6%	0.536						
1 decay e	2.00	0.83	70.5%	57.9%	1.187						
v1 trial 8 (NTrees = 1500, MaxDepth=5, MinNodeSize=0.5, nCuts=50)											
	Signal	Bkgd	Purity	Eff	FOM						
0 decay e	0.53	0.25	68.1%	27.7%	0.598						
1 decay e	2.16	1.01	68.3%	68.3% 62.7%							

	BDT variables										
	1R v 1R nll	1R v 2R nll	2R v 2R nll	2R v 3R nll	3R v 3R nll	3R v 4R nll	1R+2R kinematics	E_{rec} , towall e , towall π , p_{low} , $m_{\pi 0}$, $(d2se)$	1R+2R+ 3R fit indices		
Trial 8	•	•	•	•			•	•	•		
Trial 9	•					-	•		•		

Starting to look into systematics

- Going through Sophie's slides from her last plenary talk
 - neutrino pion production error
 - compare kinematics from different generators (NEUT, NUWRO, GENIE, alt. GENIE)
 - multi-pion production error
 - compare different multi- π production/DIS models (NEUT, varying pion multiplicity in NEUT, deuterium fits, AGKY model in GENIE)
 - pion hadronic interaction error (FSI and secondary)
 - use fit to external pion scattering data in TN325, and vary pion hadronic interaction cross sections
- Is this a good starting point?
 - Still need to address detector systematics, effect of near detector constraint?