

v_e CCQE/CC1 π^+ Selection Studies

Trevor Towstego $v_e CCQE/CC1\pi^+$ Meeting July 10, 2019

Reminder: Hybrid Sample Efficiency Loss at BDT Cut

Reminder: Efficiency Discrepancy of BDT Cut

Sample:	Hybrid	Oscillated	Weight=1
	Sample	T2K MC	T2K MC
BDT Cut Efficiency:	0.18	0.60	0.28

- Checked efficiency of BDT cut when T2K MC event weights are all set to 1, since hybrid sample events all have a weight of 1
 - Most of the discrepancy in efficiency is accounted for, but not all
- Possible reasons for remaining discrepancy:
 - Some statistical variation would be expected
 - $\overline{\nu}_e \rightarrow \overline{\nu}_e$ and $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ T2K-SK MC files are not used in hybrid sample construction
 - Different 1e1 π ⁺ definitions used in hybrid sample construction vs. BDT evaluation
 - Want change these definitions to be consistent to see if remaining discrepancy is accounted for
 - Began looking closely at how these definitions differ, and had some questions some questions still remain after discussing with both the hybrid pion group and with T2K-SK

$1e1\pi^+$ Events: Particle Thresholds

- I have been using a visible threshold for charged particles of $p_{Cherenkov}$ + 30 MeV/c in my own studies
- Yoshida-san determined her thresholds by looking at fiTQun's ring detection efficiency these were implemented into her hybrid sample construction (and therefore inherited by my hybrid sample construction)
 - Note that the threshold momentum for muons used in the hybrid sample is set to 200 MeV/c to be consistent with the 30 MeV E_{vis} cut used when selecting for atmospheric μ-like events
 - For the v_e CC1 π^+ hybrid sample , I should change this threshold to 145 MeV/c, and change the electron threshold to 30 MeV/c
- I would like to change the thresholds I use to be the same as Yoshida-san's (both for the hybrid sample construction and my own studies)

Particle	p _{Cherenkov} + 30 MeV/c	fiTQun Ring Detection Efficiency	Hybrid Sample Construction
γ	30.0 MeV/c	20 MeV/c	20 MeV/c
е	30.6 MeV/c	10 MeV/c	10 MeV/c
μ	150.5 MeV/c	145 MeV/c	200 MeV/c
π^{\pm}	189.2 MeV/c	175 MeV/c	175 MeV/c
K±	593.0 MeV/c		
р	1100.0 MeV/c	1200 MeV/c	1200 MeV/c
other			p/E > 0.75188

<u>Note</u>: the threshold for electrons (10 MeV/c) comes from the minimum momentum considered when tuning fiTQun likelihood functions

nue CCQE/CC1pi+ Meeting

Primary and Secondary Banks

- In the hybrid sample construction, both primary and secondary particle banks are looked through when selecting for $CC1\pi^+$ -like events in the T2K-SK MC
 - This comes from Xiaoyue's final state definitions used in her atmospheric fit
- Discussed at T2K-SK meeting yesterday
 - Consensus seems to be that secondary stack shouldn't be included when constructing the hybrid sample
 - However, Yoshida-san suggested that we should keep the current final state definition (with the secondary stack) for the atmospheric fit
 - This means that we would need to come up with a different way of using the hybrid samples to constrain the systematics in the atmospheric fit

Primary Stack (VCWORK)

- Requires Ichvc[i]==1 (i.e. flagged "to chase")
- Ignore nucleus
- Ignore neutrons

Secondary Stack (CONVVECT)

- Ignore particles produced with GEANT interaction code corresponding to:
 - pair production
 - Compton scattering
 - photo-electric
 - Bremsstrahlung
 - below tracking threshold
- Ignore nucleus
- Ignore neutrons
- Ignore events with generated time > 10 ns
- Ignore particles with same ID as parent (i.e. scattered particles)
- Ignore gammas with π^0 parent particle

Summary

- When investigating the efficiency discrepancy in the BDT cut, started looking closer at how final-state particles are defined in the hybrid sample construction vs. in my own studies
- There are two aspects to consider:
 - Visible particle thresholds: Will change my thresholds to be consistent with Yoshida-san's and with the hybrid sample construction
 - Primary/Secondary particles: Discussions still ongoing on how to deal with this