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Coherence and antibunching in a trapped interacting Bose-Einstein condensate
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We present a model for the equilibrium quantum statistics of a condensate of repulsively interacting bosons
in a two-dimensional trap. Particle correlations in the ground state are treated exactly, whereas interactions
with excited particles are treated in a generalized Bogoliubov mean-field theory. This leads to a fundamental
physical picture for the condensation of interacting bosons through an anharmonic oscillator ground state coupled
to excited Bogoliubov quasiparticles in which the quantum number statistics of condensate particles emerges
self-consistently. Below the Bose-Einstein condensation temperature, our model exhibits a crossover from particle
bunching to Poissonian statistics and finally antibunching as the temperature is lowered or as the trapping area is
decreased. When applied to Bose condensation of long-lived dressed excitons in a photonic band gap material,
our model suggests that this system may serve as a novel tunable source for nonclassical states of light.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is a fundamental phe-
nomena in nature and has attracted considerable attention
since its prediction in 1925.1 When the thermal de Broglie
wavelength of massive particles becomes comparable to the
interparticle spacing, quantum correlations become important.
In an ideal Bose gas, a macroscopic number of particles occupy
the ground state below a certain transition temperature. How-
ever, repulsive interaction must be considered to describe phys-
ical properties of both the ground state and excitation spectrum.
A quantum field theoretical formulation for weakly interacting
Bose condensed systems was developed by Bogoliubov.2 In
this mean-field theory, a complex number

√
N0 replaces the an-

nihilation operator of the ground state, where N0 is the number
of particles in an assumed coherent ground state. This mean-
field decomposition allows the interacting Hamiltonian to be
diagonalized and explains aspects of the elementary excitation
spectra and superfluidity in weakly interacting Bose systems.
However, the theory presumes coherent state formation at
all temperature below the BEC transition and does not give
detailed insight into the quantum statistics of particles in the
condensate.

An important new research field concerns the realization
of spontaneous Bose coherence of exciton-polaritons in
semiconductor systems.3,4 Here the effective mass of the
bosons can be made many, many orders of magnitude smaller
than for cold atom condensates.5,6 The exciton, confined in a
two-dimensional (2D) quantum well (QW), acquires its low
effective mass due to strong coupling with a one-dimensional
optical cavity resonance. As a result, the excitonic condensate
can occur on temperature scales above 1◦ K. However, the
strong coupling to propagating optical modes leads to a very
short lifetime of the exciton due to radiative recombination.
An interesting possibility is that quantum statistics of excitons
can be transformed into emitted photons, when the constituent
electron-hole pairs recombine by spontaneous or stimulated
emission.

To understand the quantum number statistics of an ex-
citonic condensate, the Bogoliubov model is insufficient.
Two approaches, the Boltzmann equation formalism7–12 and

master equation method,13,14 have been used to explain the
exciton-polariton distribution and coherence buildup in the
nonequilibrium condensation observed in one-dimensional
optical microcavity QW systems. Traditional photon lasers
are based on stimulated emission of light from the excited
levels of atoms when population inversion is achieved. On
the other hand, exciton-polariton condensation is based on
stimulated cooling of polaritons to the ground state below
a critical temperature. Unlike a laser without direct photon-
photon interaction, polariton-polariton scattering processes
from condensed to excited polariton modes influence the
coherent properties of the polariton condensate. The light
emission from one-dimensional (1D) optical microcavities
due to recombination in the exciton-polariton condensate
has been observed to exhibit photon bunching.15 On the
other hand, repulsive polariton interactions are expected to
suppress bunching effects due to their extra energy cost.
This, in turn, facilitates coherent state formation when the
system reaches thermal equilibrium. However, this has not yet
been satisfied in microcavity QW systems due to very short
polariton lifetimes.

In past polariton BEC experiments,3,4 the lifetime of the
polariton is shorter than or comparable to their phonon
induced energy relaxation time. This is due to the leakage
of the excitation’s photonic component from the cavity
due to strong coupling to radiative modes other than the
cavity mode. Therefore, the polariton condensate is not in
thermal equilibrium with its host lattice. With experimen-
tal advances toward BEC in semiconductor microcavities,
numerous theoretical studies on the nonequilibrium steady
state have been undertaken.11,12,16–19 A review article on
microcavity exciton-polaritons has recently appeared.20 The
quasi-equilibrium reached through polariton-polariton inter-
action is accompanied by the emission of partially coherent
light. The temperature of this coherent polariton phase is not
well defined. In experiments, the semiconductor microcavity
is cooled down to 4 K. The threshold behavior of polariton
lasing is then observed with increasing pumping power. For
each pumping power, the momentum distribution of polaritons
is observed and then fitted to a Bose-Einstein distribution. This
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fitting temperature (around 20–50 K) is then identified with
a condensate temperature, even though the system is not in
thermal equilibrium.

Recently it has been suggested21,22 that a new confinement
mechanism for excitons in a quantum well can simultaneously
achieve strong couplings to the desired optical modes as well
as the long exciton lifetime. This occurs in a QW sandwiched
above and below by a three-dimensional (3D) photonic band
gap (PBG) material, in which the exciton radiative transition
occurs very close to a photonic band edge. Strong coupling of
the exciton to the zero-group-velocity band edge mode endows
the exciton with the effective mass of the corresponding
photon. Furthermore, vacuum Rabi splitting23 of the exciton
radiative recombination transition, creates two branches of the
exciton dispersion relation. The lower of these two branches
is pulled into the 3D photonic bandgap, where the photon that
would normally be radiated by recombination forms a bound
state to the exciton. This “dressed exciton” forms a dispersion
minimum at the wave vector of the photonic band edge that is
on the order of 10 meV below the “bare exciton” kinetic energy
and which has an effective mass on the order of 10−5 times that
of bare exciton.21,22 The complete confinement of light by a
3D PBG allows us to consider a limiting case of the traditional
scenario involving incoherent pumping and rapid radiative
decay of excitons. In our system, both the pumping rate and
decay rate tend to zero and thermodynamic equilibrium is
established in the exciton system.

In this paper, we construct a model for repulsively inter-
acting Bose particles in a finite area two-dimensional trap that
describes equilibrium quantum statistics of these bosons when
a condensate forms below a temperature determined by (i) the
depth of their dispersion minimum, (ii) their effective mass
within this minimum, (iii) the trapping area, (iv) the strength of
their mutual repulsion, and (v) their density within the trapping
region. Our model offers a fundamental physical picture for
quantum particle number statistics through a reduction of the
full interacting many-body problem. This consists of a ground
quantum anharmonic oscillator coupled to excited Bogoliubov
quasiparticles. Unlike the Bogoliubov mean-field theory that
treats the ground state as a simple harmonic oscillator in
which coherent state formation (Poissonian number statistics)
is assumed at all temperatures below the BEC transition
Tc, our anharmonic oscillator model enables more general
forms of quantum statistics to emerge self-consistently below
the BEC transition Tc. This leads to the identification of
a new temperature scale T∗ < Tc below which coherence
develops. As the temperature is lowered further (or the trapping
area is decreased), quantum statistical properties beyond the
Bogoliubov framework such as antibunching are described.
While this model could apply to a general Bose condensate,
we choose parameters that describe a long-lived excitonic
condensate in a 3D PBG quantum well heterostructure.21,22

In Sec. II, we present a model Hamiltonian, which is
divided into two parts, (i) an anharmonic ground state and
(ii) excited states with dispersion. For the excited states
we invoke a mean-field theory for 〈a+

0 a+
0 〉 based on the

exact peak position of the ground state particle number
statistical distribution in the anharmonic oscillator model
retained by treating particle-particle interactions exactly. This
leads to an equation for the total number of particles at

thermal equilibrium. The anharmonic oscillator ground state
Hamiltonian is treated exactly in Sec. III. Thermal and various
Poisson-like distributions of particles in the condensate are
found, depending on temperature, trapping area, and strength
of exciton-exciton repulsion. We also find the coexistence
of these two states for temperature very close to the BEC
temperature under certain circumstances. The detailed role of
excited states in the dressed-exciton dispersion, described by
a depth parameter and two effective masses, is studied and
elucidated in Sec. IV. Here we also determine the condensate
fraction and the degree of second order coherence of the ground
state for a broad range of external control parameters. Finally,
a detailed analytical and numerical analysis of the ground state
grand partition function is shown in the Appendix.

II. MODEL

The general Hamiltonian for an interacting Bose system is
given by

H =
∑

k

(εk − μ)a+
k ak +

∑
p,q,k

1

2
gka

+
q+ka

+
p−kapaq, (1)

where the ak (a+
k ) annihilates (creates) a Boson with wave

vector k. Here εk is the dressed exciton dispersion relation
with a reduced effective mass minimum at the photonic
band edge wave vector21,22 assumed to be at k = 0. gk is
a repulsive interaction. Theoretical study24 has shown that
electron-electron and hole-hole exchanges lead to dominant
repulsive interaction among excitons, while the classical direct
Coulomb interaction is negligible. The interaction typically
shows a momentum cutoff of the order a−1

B , where aB is the
exciton Bohr radius. For small momentum (k), the effective

repulsive bare exciton-exciton interaction energy, 6Eba
2
B

S
, can

be identified8 where Eb is the bare exciton binding energy
and S is the exciton confinement area. We use notation gk

for repulsive interaction and we assume a functional form

gk ≡ g0e
−(kaB )2

and g0 = 6Eba
2
B

4S
. Here the additional factor

of 4 in the denominator comes from the reduced repulsive
interaction due to the half exciton-half photon nature of the
dressed-exciton when the exciton recombination energy is
in resonance with the photonic band edge. For simplicity
we use this resonance form of g0 for small deviations from
resonance as well. The chemical potential μ is chosen to
provide a specific number of excitons overall as determined
by some external nonresonant incoherent pumping mechanism
that creates these electron-hole pairs. In what follows we
consider the limiting case in which the incoherent pumping
rate and the exciton decay rate (radiative and nonradiative)
are very small compared to the inverse equilibrium time scale.
Accordingly we consider thermodynamic equilibrium of the
interacting, dressed exciton system.

To describe the low temperature properties of exciton
gas, we keep only the terms of the Hamiltonian (1) whose
expectation values are on the order of O(N0) and O(N2

0 )
where N0 = 〈a+

0 a0〉 is the ground state occupation number.
We have the ground state interaction term a+

0 a+
0 a0a0 when

setting all momenta {p,q,k} zero. We obtain a+
0 a0a

+
k ak when

setting {k = 0,p = 0,q �= 0} or {k = 0,q = 0,p �= 0} (direct

024515-2



COHERENCE AND ANTIBUNCHING IN A TRAPPED . . . PHYSICAL REVIEW B 84, 024515 (2011)

interaction term), and {q + k = 0,p = 0,k �= 0} or {p − k =
0,q = 0,k �= 0} (exchange interaction term). Finally, we retain
the terms a+

k a+
−ka0a0 when {p = 0,q = 0,k �= 0} (two ground

state particles are scattered into two particles with opposite mo-
mentum) and a+

0 a+
0 aka−k when {p + k = 0,q − k = 0,k �= 0}

(two particles with opposite momentum are scattered into the
ground state). Equation (1) becomes

H 	 H̃0 + H̃e, (2a)

H̃0 = (ε0 − μ)a+
0 a0 + 1

2
g0a

+
0 a+

0 a0a0, (2b)

H̃e =
∑
k �=0

[(εk − μ) + (gk + g0)a+
0 a0]a+

k ak

+
∑
k �=0

1

2
gk(a+

k a+
−ka0a0 + a+

0 a+
0 aka−k). (2c)

We further approximate the reduced Hamiltonian (2) using
a mean-field theory for the interaction between ground state
particles and excited state particles. On the other hand, we
consider the full interaction between particles within the
single-particle ground state manifold and we treat it as a
quantum anharmonic oscillator.

In our mean-field theory we neglect any correlations be-
tween fluctuations about the assumed mean field. The absence
of correlation in the fluctuation between two operators Ô1 and
Ô2 is defined by the condition 〈(Ô1 − 〈Ô1〉)(Ô2 − 〈Ô2〉)〉 = 0.
In this case, the mean-field approximation of the operator
product is given by Ô1Ô2 → Ô1〈Ô2〉 + 〈Ô1〉Ô2 − 〈Ô1〉〈Ô2〉.
Equation (2), in this mean-field theory, becomes

H → H0 + He − Hconst, (3a)

H0 = (ε0 + Ie − μ)a+
0 a0 + 1

2
g0a

+
0 a+

0 a0a0

+ Je(a0a0 + a+
0 a+

0 ), (3b)

He =
∑
k �=0

{
[εk − μ + (g0 + gk)N0]a+

k ak

+ 1

2
gk〈a0a0〉a+

k a+
−k + 1

2
gk〈a+

0 a+
0 〉aka−k

}
, (3c)

Hconst = 2Je〈a0a0〉 + +Ie〈a+
0 a0〉, (3d)

where Ie = ∑
k �=0(g0 + gk)〈a+

k ak〉 and Je =
1
2

∑
k �=0 gk〈a+

k a+
−k〉 = 1

2

∑
k �=0 gk〈aka−k〉. Here, both Ie

and Je may be nonzero even at zero temperature due to
repulsive bosonic interactions that force some bosons to
occupy single-particle excited states even when the overall
system is in its many-body ground state.

The single exciton ground state energy is increased by Ie

due to renormalization by excited particles. Although excited
particles have a similar effect on other excited particles
[included in the general Hamiltonian (1)], when performing
the approximation from Hamiltonian (1) to ((2)) [considering
the terms on the order of O(N0) and O(N2

0 )], there is no
explicit term Ie in He. In what follows we simply absorb Ie

into a redefinition of the single particle ground state energy
ε0. Our mean-field theory describes spontaneous symmetry
breaking in which 〈a+

0 a+
0 〉 can acquire a nonzero value and

a specific phase as in the conventional Bogoliubov theory.2

However, unlike the standard Bogoliubov mean field in which

it is assumed that 〈a+
0 〉 = √

N0 throughout, we consider a
more exact treatment of bosons in the single-particle ground
state manifold described by Eq. (3b). Spontaneous symmetry
breaking associated with the mean-field 〈a+

0 a+
0 〉 drives pair

correlations of the form 〈a+
k a+

−k〉 in the single-particle excited
states as seen in Eq. (3c). This, in turn, leads to a coupling
parameter Je that appears in the condensate Hamiltonian (3b).
In the absence of any further approximations, the Hamiltonian
(3b) is analogous to that of a single-mode optical field for
photons in a medium with a Kerr nonlinearity (related to
g0) and which is parametrically amplified with photon pairs
(through Je). It is well known in quantum optics that the Kerr
effect leads to photon antibunching25 and that the degenerate
parametric amplifier describes quadrature squeezing25 of the
resulting optical field. In what follows, we consider the
antibunching effects in our excitonic condensate in thermody-
namic equilibrium due to repulsive interactions. For simplicity,
we evaluate Je in our mean-field theory, but use it in our ground
state sector only as a justification for spontaneous symmetry
breaking and phase coherence. Accordingly we take the limit
of Je → 0 in the Hamiltonian (3b) and it becomes

H0 = (ε0 − μ)a+
0 a0 + 1

2ga+
0 a+

0 a0a0. (4)

We further simplify our excited state Hamiltonian He

by incorporating two different mean fields according to the
statistical distribution of the ground state. If the peak of the
ground state particle numbers distribution occurs at a nonzero
particle number, we suppose coherence is built up and we
choose 〈a0a0〉 ≈ N0. In what follows, we show that this occurs
at a secondary temperature scale, slightly below that required
for Bose condensation. If the peak of the ground state statistical
distribution occurs at zero particle number, we take 〈a0a0〉 = 0.
This occurs not only above the BEC temperature scale, but in
some cases slightly below it.

Case I: Ground state with Coherence. The Hamiltonian of
excited states, Eq. (3c), reduces to

He =
∑
k �=0

[εk − μ + (g0 + gk)N0]a+
k ak

+
∑
k �=0

1

2
gkN0(a+

k a+
−k + aka−k). (5)

Here N0 is the expectation value of the number of particles in
the ground state that, in the mean-field approximation, con-
nects the ground state and the excited states. The Hamiltonian
(5) can be diagonalized by Bogoliubov transformation

He =
∑
k �=0

εkb
+
k bk, (6)

where bk = ak+αka
+
−k√

1−α2
k

, αk = εk−μ+(g0+gk )N0−εk

gkN0
, εk =√

[εk−μ+(g0+gk)N0]2−(gkN0)2, and εk is the dispersion of
dressed-excitons described later by Eq. (18). The expectation
value of the number of Bogoliubov elementary excitations
〈b+

k bk〉 = 1
eβεk −1 where β ≡ kBT . To recapture the number

of excited real particles, we perform the inverse Bogoliubov

transformation ak = bk−αkb
+
−k√

1−α2
k

= cosh θkbk + sinh θkb
+
−k .

The expectation value of the number of excited particles
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〈a+
k ak〉 = εk−μ+(g0+gk)N0−εk

2εk
+ εk−μ+(g0+gk)N0

εk (eβεk −1) . In addition,

the pair correlation field 〈a+
k a+

−k〉 = 〈 b+
k −αkb−k√

1−α2
k

b+
−k−αkbk√

1−α2
k

〉 =
−αk

1−α2
k

(1 + 2
eβεk −1 ). Therefore, we can establish a pair of

self-consistent equations for the chemical potential μ and
average ground state occupation N0, for a fixed temperature
and a given total number of real particles N .

The first of these equations is

N = N0 +
∑
k �=0

(
εk − μ + (g0 + gk)N0 − εk

2εk

+ εk − μ + (g0 + gk)N0

εk(eβεk − 1)

)
. (7)

The second equation is a relation between N0 and μ obtained
from an exact treatment of the condensate Hamiltonian (3b)
as described in Sec. III. These two equations can be used to
specify N0 and μ.

Case II: Ground state without Coherence. In this case, we
show that the ground state particles are still thermal distributed,
although we have 〈N0〉 �= 0. Since the peak in the ground
state particle number distribution appears at |0〉, we assume
〈a0〉 = 0. The Hamiltonian of excited states is approximated by
a bare boson model He = ∑

k �=0[εk − μ + (g0 + gk)N0]a+
k ak .

The self-consistent equation for a given total number of real
particles in the system is

N = N0 +
∑
k �=0

1

eβ[εk−μ+(g0+gk)N0] − 1
. (8)

Both cases I and II are based on a precise treatment of the
ground state Hamiltonian given by Eq. (4). In the following
section, we first present our evaluation of the interacting Boson
partition function for this single mode. This yields the degree
of second order coherence and the boson number probability
distribution in the condensate. The complete results including
quantum statistics of the ground state and excited states
corresponding to exciton dispersion relation in a quantum
well strongly coupled to photonic band edge photons21,22 is
presented in Sec. IV.

III. SINGLE MODE BOSON MODEL WITH REPULSIVE
INTERACTION

We consider a simple bosonic particle model with only one
mode and repulsive interaction. The Hamiltonian is given by
Eq. (4). This Hamiltonian is similar to that of an anharmonic
oscillator describing the Kerr medium.25–27 It has been shown
that sub-Poissonian photon statistics emerge from a coherent
laser propagating in the Kerr medium.25–27 In addition, we refer
the reader to Refs. 28 and 29 for an extensive discussion on
the energy eigenvalue problem of the anharmonic oscillator. In
this section, we apply the grand partition function to obtain the
equilibrium quantum statistics of the anharmonic oscillator.
We drop the mode subscript for notational simplicity. The
corresponding grand partition function is

Z = Tr
{
e−β[(ε0−μ)a+a+ 1

2 ga+a+aa]
}
. (9)

In the particle number basis, the grand partition function
(9) becomes

Z =
∑

n

[
e− 1

2 g̃n2+μ̃n
]
, (10)

where ε̃0 ≡ βε0, μ̃ ≡ βμ, g̃ ≡ βg, and ε̃0 − 1
2 g̃ ≡ 0.

The probability to occupy the number state |n〉 is

P (n) = 1

Z
eμ̃n− 1

2 g̃n2
. (11)

When μ̃ < 0, the probability decreases monotonically with
n and its distribution is similar to the thermal distribution of
noninteracting bosons. When μ̃ > 0, the probability increases
first and then decreases with n, with a peak for occupy-
ing |n �= 0〉. The sign of the chemical potential character-
izes a fundamental difference in quantum statistics of the
condensate.

Through our derivation in the Appendix, the value of the
grand partition function is given by

Z =
{

Zn : μ̃ < 0,

Zn + Zs : μ̃ > 0,
(12a)

Zn 	 ZA = e
1
2 g̃x2

0 +ln[1+x0][1 + g̃x0(1 + x0)]−1/2, (12b)

Zs =
√

g̃

2π
e

1
2

μ̃2

g̃
2π

g̃
, (12c)

where ZA is obtained under a saddle point approximation when
evaluating Eq. (A5b) and x0 is the saddle point described by
Eq. (A4). With this analytical evaluation of grand partition
function, it is straightforward to find the expectation value of
the number of particles in the ground state by 〈N0〉 = ∂

∂μ̃
ln Z,

which is described by Eqs. (A9).
For a given average particle number 〈N0〉 in the ground

state, we can solve for x0 in Eqs. (A9) and obtain the chemical
potential through the relation (A4). This yields the probability
distribution of bosons (11) in the ground state. The degree of
second order coherence25 is given by

Isec ≡ 〈a+a+aa〉
〈a+a〉2

= 〈N2
0 〉 − 〈N0〉
〈N0〉2

. (13)

Using 〈N2
0 〉 = 1

Z
∂2Z
∂μ̃2 = 〈N0〉2 + ∂〈N0〉

∂μ̃
, this becomes

Isec = 1 + 1

〈N0〉2

(
∂〈N0〉
∂μ̃

− 〈N0〉
)

. (14)

It follows from Eq. (A9) in the Appendix that we have the
analytical expression of ∂〈N0〉

∂μ̃
given by Eqs. (A10).

In Fig. 1(a), three curves with circle dots (blue online) are
solutions of Eq. (A9a) with a positive chemical potential for
three different values of 〈N0〉. As g̃ increases x0

〈N0〉 approaches
unity. The corresponding second order coherence in Fig. 1(b)
shown by three lines with triangle dots (green online) decreases
from large positive values to values below 1, indicating
a crossover from dressed-exciton bunching to antibunching
as the repulsive interaction increases. This corresponds to
a change from super-Poissonian to Poissonian and then to
sub-Poissonian dressed-exciton number distribution. The three
red curves with plus (+) dots are solutions of Eq. (A9a)
with a negative chemical potential. As g̃ decreases x0

〈N0〉 again
approaches unity. The corresponding degrees of second order
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FIG. 1. (Color online) (a) The value of x0
N0

is shown as a function of g̃ for the single mode interacting Boson model with three different
choices of N0 = 100,1000,10 000, where x = (ln g̃)/2.3026 + 10.4583. The Coh in the legend denotes the branch of the solution from
Eq. (A9a) with a positive chemical potential because partial coherence is built up in this branch. The Inc in the legend denotes the branch of
the solution from the Eq. (A9a) with a negative chemical potential due to the incoherent statistical nature of bosons in this branch. (b) The
corresponding degree of second order coherence for each solution in (a) is shown. (c) Statistical distributions for four specific points indicated
by a,b,c,d are shown. These four points have the same 〈N0〉 = 1000, but with different g̃ from weak to strong. The corresponding x values for
g̃ are 3,4,5,6 for a,b,c,d , respectively.

coherence in Fig. 1(b) shown by three lines with diamond dots
(magenta online) increase from a value larger than unity to
a limiting value of 2 for an ideal Bose thermal distribution.
We note that the saddle point x0 converges to the number of
ground state particles 〈N0〉 for either strong or weak g̃. When
the chemical potential is positive, we also observe that for
fixed g̃ there will be smaller ratio of x0

N0
for larger N0. This

corresponds to the smaller value of the degree of second order
coherence and suppressed fluctuation in the ground state when
the number of particles is greater.

The variation in exciton number distribution for four
different choices of g̃ = 0.3481 · 10x−10, x = 3,4,5,6 with
the same 〈N0〉 = 1000 for a,b,c,d points are shown in
Fig. 1(c). As the statistical distribution changes from the
super-Poissonian to sub-Poissonian by either (i) lowering
the temperature, (ii) decreasing the trap size, dressed-exciton
antibunching occurs. It is of considerable importance if this
antibunching in the condensed dressed excitons system can
directly be transferred to the statistics of light emitted by
the radiative recombination of the underlying electron-hole
pairs. The light for which the photons arrive at regular time
intervals has a lower photon-number fluctuation than the other
light with statistically independent photon arrival times. This

“shot” noise limits the accuracy with which information can
be transmitted by small numbers of photons. Antibunched
light from our dressed exciton condensate may provide an
important alternative to conventional laser light for low noise
measurements and information transfer.

As shown in Fig. 1(a), x0 approaches N0 both at very
low and very high temperatures. By approximating x0 ≈ N0,
the chemical potential becomes μ̃ ≈ g̃N0 − ln(1 + N−1

0 ) =
g̃N0 − N−1

0 = (g̃N2
0 − 1) · N−1

0 , for N0 � 1. This is true
whenever there is macroscopic occupation of the ground state.
Therefore, the sign of μ̃ is determined by the value of g̃N2

0
relative to unity, (i.e., μ̃ > 0 when g̃N2

0 > 1 and μ̃ < 0 when
g̃N2

0 < 1). The probability distribution for the number of
excitons in the ground state follows from the Eq. (11)

P (n) = 1

Z
e
− 1

2 g̃(n− μ̃

g̃
)2+ μ̃2

2g̃ . (15)

If μ̃ � g̃0.5, the distribution approaches the Gaussian
probability density function 1√

2πσ 2
exp(− (n−n̄)2

2σ 2 ) with n̄ = μ̃/g̃

and σ = g̃−0.5. Figure 2 shows the degree of second order
coherence as a function of μ̃ with the expectation value
〈n〉 = 1000 of the distribution described by Eq. (15). The
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FIG. 2. (Color online) The degree of second order coherence
as a function of μ̃ with the expectation value 〈n〉 = 1000 of the
distribution described by Eq. (15). The solid curve is the branch for
positive μ̃ with x = ln μ̃ denoted by Coh. The dotted curve is the
branch for negative μ̃ with x = ln(−μ̃) denoted by Inc.

dotted curve indicates a slight coherence buildup from the
thermal distribution (Isec = 2) when the negative chemical
potential increases toward zero (i.e., the left direction of the x

axis). However, the solid curve shows a much larger Isec, that
is, a large number fluctuation, for smaller positive chemical
potential, and the degree of second order coherence decreases
toward the value slightly less than unity (the right direction of
the x axis).

IV. EXCITON CONDENSATION NEAR A PHOTONIC
BAND EDGE

A. BEC temperature in a 2D finite system

In an infinite 2D system, BEC occurs only at zero tempera-
ture due to low energy, long wavelength, phase fluctuations
for temperature T > 0. However, a confinement potential
can discretize the system energy spectrum, allowing BEC to
occur at finite temperature. Here, we consider the macroscopic
occupation of the ground state as evidence for BEC without
going to the thermodynamic limit (i.e., the confinement area
S is finite). For an ideal Bose gas in a finite system, the energy
spectrum Ei (i = 0,1,2, . . . ,) is discrete and E0 = 0 denotes
the ground state. The expectation value of number of particles
is N = N0 + Ne, where N0 = (z−1 − 1)−1 and z ≡ eβμ is the
fugacity. The number of excited particles is

Ne =
∞∑
i=1

1

z−1eEi/kBT − 1
. (16)

We have 1/z = 1 + 1/N0 ≈ 1 for N0 � 1 whenever a macro-
scopic occupation of the ground state occurs, otherwise N0 is
negligible and Ne ≈ N . Therefore, as temperature decreases, z
(determined by N and T ) approaches unity and a macroscopic
number N0 appears. We define a reference critical temperature
Tc (Ref. 30) to characterize this crossover

∞∑
i=1

1

eEi/kBTc − 1
= N. (17)
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FIG. 3. (Color online) The critical (reference) temperature Tc as
a function of the particle density. Tc is defined by Eq. (17) with
the assumption of zero occupation of the ground state. Here, there
is no coupling to band edge photons and we use the bare exciton
(mexc = 0.57me). Depicted are three different choices of the exciton
confinement area. Here S0 = (10 μm)2 and me is bare electron mass.

In what follows, we associate Tc with the BEC transition
temperature for a finite size system.

In general the energy spectrum for a 2D box with area

S is Enx,ny
= h̄2π2(n2

x+n2
y)

2mS
(nx and ny are positive integers).

In our description of the reference temperature, the ground
state energy E1,1 is redefined as the zero of energy. When
transforming the summation (17) into an integral, the range of
integration is from the first excited states E1,2 to infinity.

Figure 3 shows the critical temperature Tc as a function
of the particle density with effective mass mexc = 0.57me

(no dressing by photons) and various confinement areas. The
critical transition temperature is on the order of Kelvin for the
exciton density below unity per Bohr radius square. On the
other hand, if we consider ultramobile dressed excitons in a
PBG QW heterostructure with a simple parabolic dispersion
for all energies, the effective-mass model would predict a
critical temperature on the order of thousands of degrees
Kelvin. This is due to the very low effective mass in the dressed
exciton dispersion minimum relative to that of the bare exciton.
This temperature scale is far beyond the range of validity of
the single effective mass model.

To achieve a realistic estimate of the BEC critical tempera-
ture, it is necessary to consider a more detailed dispersion curve
(see Fig. 4) characterized by three parameters (i) the photon
effective mass in the dispersion minimum, (ii) the depth of the
dispersion minimum, and (iii) the bare exciton effective mass
valid for wave vectors away from the photonic band edge and
energies higher than the dressed exciton dispersion minimum.
Strong exciton dressing occurs only at the wave vector
corresponding to a photonic band edge, when the exciton
radiative recombination energy coincides with the band edge
energy. The full dressed exciton dispersion curve is similar
to that of an exciton-polariton in semiconductor microcavity.
Accordingly, we model the dressed exciton dispersion as

εk = Eexc,k + Eph,k − √
(Eexc,k − Eph,k)2 + 4(h̄gxp)2

2
+ h̄gxp.

(18)

Here mexc and mph are the bare exciton effective mass
and photon effective mass at a photonic band edge. Also
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FIG. 4. (Color online) The dispersion curve described by Eq. (18)
for an exciton strongly coupled to band edge photons. Here the
bare exciton effective-mass mexc = 0.57me, the band edge photon
effective-mass mph = 5.7 × 10−6me, and the exciton-photon cou-
pling gxp = 8 meV. me is the bare electron mass.

Eexc,k = h̄2k2

2mexc
, Eph,k = h̄2k2

2mph
, and gxp is the magnitude of the

vacuum Rabi splitting of the exciton energy due to the strong
interaction with the band edge (which we choose to be at
�q = 0 for convenience) photon. gxp determines the depth of
the dressed exciton dispersion minimum. Figure 4 shows a
typical dispersion curve with parameters chosen for excitons
in a realistic PBG QW heterostructure.22

Figure 5 shows the critical temperature for dressed exciton
condensation as a function of exciton density using Eqs. (18)
and (17). The appearance of the bare exciton effective mass for
large momentum deviation from the photonic band edge leads
to a BEC critical transition temperature in the range of tens
of Kelvin. We note that for the effective mass of the dressed
exciton achievable in our photonic band gap structure, the
curves are indistinguishable on the resolution scale of Fig. 5.
If, on the other hand, we choose the dressed exciton effective
mass that is artificially 100 times larger than that for Fig. 5,
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FIG. 5. (Color online) The critical (reference) temperature Tc

for excitons dressed by band edge photons as a function of the
particle density. Tc is defined by Eq. (17) with the assumption of
zero occupation of the ground state for the dressed exciton at three
different choices of exciton confinement area. Here S0 = (10 μm)2,
and the dispersion of the dressed exciton is given by Eq. (18) with
parameters given in the caption of Fig. 4.

the effect of the larger confinement area would appear more
visibly as leading to a larger critical density for BEC. In the
present paper, we focus on 2D-box confinement. In this case
the dispersion (18) is used and the exciton wave function
is required to vanish along the boundaries of a fixed square
region.

B. Properties of the dressed exciton condensate

In Sec. III, we presented a detailed description of a
single mode interacting boson model. However, the dispersion
relation for excited bosons is required to describe the realistic
spontaneous coherence buildup at low temperature. Here, we
consider the complete model including the dressed exciton
dispersion [Eq. (18)], and two equations (8) and (7) (for ther-
mal and Poisson-like distributions, respectively) that connect
the average ground state occupation with the true chemical
potential. We study the conditions for Bose condensation
and the nature of quantum statistics for various choices of
temperature, trapping area, the strength of exciton-photon
coupling, and exciton-exciton repulsion.

Defining the dimensionless variables k̃ = k
√

S
2π

, ˜Eexc =
(2πh̄)2

2mexcSkBT
, ˜Eph = (2πh̄)2

2mphSkBT
, g̃xp = h̄gxp

kBT
, the dimensionless

value of the dressed exciton realistic dispersion curve εk given

by Eq. (18) becomes ε̃k̃ = Ẽx k̃
2+Ẽpt k̃

2−
√

(Ẽx−Ẽpt)2
k̃2+4g̃2

xp

2 + g̃xp.
The dimensionless Bogoliubov elementary excitation energy
is ε̃k̃ = √

[ε̃k̃ − μ̃ + (g̃0 + g̃k)N0]2 − (g̃kN0)2, where μ̃ =
g̃x0 − ln(1 + x−1

0 ). Since the sign of the chemical potential is
determined by the sign of g̃x2

0 − 1, combining Eqs. (7) and (8)
and transforming the summation into integration, we obtain

N = N0 + 2π

∫
k̃dk̃

(
ε̃k̃ − μ̃ + (g̃0 + g̃k)N0 − ε̃k̃

2ε̃k̃

+ ε̃k̃ − μ̃ + (g̃0 + g̃k)N0

ε̃k̃(eε̃k̃ − 1)

)
g̃x2

0 > 1, (19a)

N = N0 + 2π

∫
k̃dk̃

1

e[ε̃k̃−μ̃+(g̃0+g̃k )N0] − 1
g̃x2

0 < 1. (19b)

Here, to convert from summation to integral, the energy
level spacing in our box should be less than the energy
scale kBT . For our typical choice of exciton confinement
area S = (10 μm)2, this, strictly speaking, requires T �
10 K. For lower temperatures, a precise treatment requires
that we retain eigenvalues in the range (0,h̄gxp) as dis-
crete terms in the summation. However, these terms are
relatively small compared to the summation over higher
energy states (with much larger bare-exciton effective-mass
and energy spacing much less than kBT ). As a result
it is a reasonable approximation, for all temperatures, to
replace all discrete terms (except the ground state) by an
integral.

There are two primary quantities of interest. One is the
condensate fraction, N0

Ntot
(Ntot ≡ N ). The other is the degree

of second order of coherence in the ground state. We plot
these two quantities as a function of temperature and exciton
confinement area, both of which can be tuned in situ. Other
parameters, such as the dressed exciton dispersion depth (i.e.,
gxp) and the dressed exciton effective mass (both due to
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FIG. 6. (Color online) (a) The value of N0
Ntot

as a function of temperature for three different choices of strong exciton-photon coupling is
shown. The parameters S0, g0, Ntot−0, mexc−0mph−0, and gxp−0 are defined below Eq. (19). (b) The degree of second order coherence and (c) the
Hemholtz free energy defined by Eq. (20) are shown for each solution in (a). Three curves with circles (blue online and denoted by Coh in the
legend) are obtained from the Eq. (19a) for the positive chemical potential. Their degrees of second order coherence are shown by three curves
with triangle symbols (green online) in Fig. 6(b). The other three curves with plus symbols (red online and denoted by Inc in the legend) are
obtained from Eq. (19b) for negative chemical potential and their degrees of second order coherence are three curves with diamonds (magenta
online).

exciton-photon interaction), may be engineered to some extent
as well. For concreteness, we use the following base param-
eters in the discussion below. The confinement area is S0 =
(10 μm)2, dressed exciton repulsive energy g0 = 7.5 meV and
the total number of dressed excitons is Ntot−0 = 1000. We also
choose the exciton-photon coupling gxp−0 = 8 meV, the bare
exciton effective mass mexc−0 = 0.57me and band edge photon
effective mass mph−0 = 5.7 × 10−6me (me is bare electron
mass) to specify the dressed exciton dispersion. Whenever
these parameters are changed from these base values, a detailed
description is provided in the figure caption.

In Fig. 6(a), below a critical temperature determined by
the trap size, exciton density, and repulsive interaction, the
system exhibits a crossover to a macroscopic occupation of
the ground state with the chemical potential still negative
[indicated by the curves with the plus symbol (red online)].
When the temperature decreases further, a self-consistent
solution of Eq. (19b) based on negative chemical potential no
longer exists. At a temperature below the BEC temperature,
the only solution appears in the other branch described by
Eq. (19a), [depicted in Fig. 6(a) by the curves with circle
symbols (blue online)], based on a positive chemical potential.
As the temperature decreases, the degree of second order

coherence decreases from 2 towards 1 [shown in Fig. 6(b)
by the curves with diamond symbols (magenta online)] for
negative chemical potential. It then jumps to a larger positive
value [shown in Fig. 6(b) by the curves with triangle symbols
(green online)] indicating large number fluctuations in the
condensate at the transition from negative to positive chemical
potential. At the temperature of this transition (chemical
potential changes from negative to positive), there is no
dramatic change in the overall distribution function and the
expectation value of the number of ground state particles has
no discontinuity. However, there is a slight change of the peak
position from zero for negative potential to nonzero for positive
potential. This indicates a larger probability to occupy high
number states and a lower probability to occupy low number
states. The fluctuation due to occupying lower number states
is bounded, however, the fluctuation due to occupying larger
number states is not bounded. This leads initially to a super-
Poissonian distribution for the positive chemical potential with
a much broader width than the expectation value of the ground
state particles. In the positive chemical potential branch, the
degree of second order of coherence then drops rapidly with
temperature to below 1, indicating exciton antibunching in the
condensate.
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To determine the relative stability of the coherent and
incoherent states, we consider the Helmholtz free energy for
both solutions of Eqs. (19)

F = U − T S = −kBT (ln Z − μ̃Ntot). (20)

We use the following grand partition function for the general-
ized Bogoliubov model

Z = Z0 · Ze · Zconst, (21a)
where

Ze =
∏
k �=0

1

1 − e−βEk
, (21b)

with

Ek =
{

εk : g̃x2
0 < 1,

εk : g̃x2
0 > 1,

(21c)

and

Zconst = eβHconst . (21d)

Here Hconst is given by Eq. (3d), εk is the bare exciton energy
[Eq. (18)], and the Bogoliubov elementary excitation energy
εk =

√
[εk − μ + (g0 + gk)N0]2 − (gkN0)2. Z0 is the grand

partition function for the condensate given by Eq. (12). Since
we take the limit as Ie and Je approach zero when calculating
Z0, we set Zconst = 1 for consistency.

If the exciton-photon coupling is made stronger, a deeper
local minimum in the dressed exciton dispersion occurs and the
critical temperature for BEC increases. In this case it is possible
to observe an overlap region in the temperature between
the two branches of thermodynamic equilibrium described in
Eq. (19) [dash-dot curve with circles (blue online) and dash-dot
curve with plus symbols (red online)]. This is most evident in
Fig. 6(a) for the larger value (5gxp) exciton-photon coupling. In
this overlap region, both Eqs. (19a) and (19b) exhibit a solution
at the same temperature. Starting from a sub-Poissonian state

(blue curve) at a very low temperature, our model predicts
a narrow region of bistability as the temperature approaches
the BEC temperature from the condensate phase in which
both partially coherent and incoherent solutions exist. As the
temperature increases further, no solution exists for the positive
chemical potential and the system transfers from the bistable
state to the incoherent state.

Figure 6(c) shows the Helmholtz free energy for each state
described in Fig. 6(a). Clearly the free energies are quite close
for the incoherent and coherent states in the coexistence region.
The detailed nature of the transition between these states may
require a more precise treatment of the terms Ie and Je.

Figure 7 illustrates the role of the exciton-exciton repulsive
interaction on BEC and exciton statistics within the conden-
sate. The system starts to have a macroscopic number of
particles in the ground state while the chemical potential is
still negative as indicated by the curves with plus symbols
(red online). As the temperature drops further below the
BEC critical temperature, no more self-consistent solution of
Eq. (19b) based on the negative chemical potential exists. The
system switches to the positive chemical potential solution
Eq. (19a) [curves with circles (blue online)]. Unlike the
variation of the exciton-photon coupling gxp, the variation of
exciton-exciton coupling has a minor influence on the BEC
critical temperature. However, we are able to observe a larger
overlap region in temperature (where coherent and incoher-
ent solutions coexist) for smaller exciton-exciton repulsive
interaction [indicated by the dash-dot curve with circles (blue
online) and the dash-dot curve with plus symbols (red online)
in Fig. 7(a)].

In Fig. 8, we consider the role of the dressed-exciton
effective mass on BEC and condensate statistics. As the
effective mass becomes larger, the critical BEC temperature
decreases as indicated by the shift of curves for N0/Ntot to
the left. To bring the BEC temperature back to order of tens
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FIG. 7. (Color online) (a) The value of N0
Ntot

as a function of temperature for three different choices of exciton-exciton coupling is shown.
The parameters S0, g0, Ntot−0, mexc−0mph−0, and gxp−0 are defined below Eq. (19). (b) The degree of second order coherence for each solution
in (a) is shown. Three curves with circles (blue online and denoted by Coh in the legend) are obtained from Eq. (19a) for positive chemical
potential, their degrees of second order coherence are shown by three curves with triangle symbols (green online) in (b). The other three curves
with plus symbols (red online and denoted by Inc in the legend) are obtained from Eq. (19b) for negative potential and their degrees of second
order coherence are three curves with diamonds (magenta online). Since the exciton-exciton repulsive interaction has no significant influence
on the BEC critical temperature, all curves in (a) for different exciton-exciton interaction are in overlap. For the sake of visual clarity, we
artificially shift the curve in (a) for 0.1g0, 5 K toward the right part of the figure, and we shift the curve for 0.01g0, 10 K toward the right.
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FIG. 8. (Color online) (a) The value of N0
Ntot

as a function of temperature for three different choices of dressed exciton effective mass is
shown. The parameters S0,Ntot = 10Ntot−0, mexc−0 mph−0, and gxp−0 are defined below Eq. (19). (b) The degree of second order coherence for
each solution in (a) is shown. Here mdrex−0 in the legend denotes the effective mass of the dressed exciton. We obtain mdrex−0 ≈ 2mph−0 from
Eq. (18) for the case mexc � mph. Three curves with circles (blue online denoted by Coh in the legend) are obtained from Eq. (19a) for the
positive chemical potential. Their degrees of second order coherence are shown by three curves with triangle symbols (green online) in (b).
The other three curves with plus symbols (red online and denoted by Inc in the legend) are obtained from Eq. (19b) for the negative potential
and their degrees of second order coherence are three curves with diamonds (magenta online).

of Kelvin, we make an additional parameter change, setting
Ntot = 104, for all three-different choices of dressed-exciton
effective mass in Fig. 8. As the temperature decreases, we
observe the change of ground state statistics from thermal
to Poissonian. The system with large effective mass has a
higher density of low energy excited states. This leads to a
lower condensate fraction at a given temperature. However,
the coexistence region in temperature with two branches of
solutions disappears for large effective mass.

A system with large effective mass is able to accept more
particles in lower energy excited states than one with small
effective mass. When the temperature is below the critical
temperature, even a small condensate fraction means a large
number of particles are in the ground state. This increases the
ground state interaction energy (i.e., g0N

2
0 /2). The transition

in exciton quantum statistics is determined by the sign
of g̃0N

2
0 − 1 [see discussion above Eq. (15)]. Therefore,

the ground state particles will easily become Poissonion
distributed once the temperature is less than BEC critical
temperature. Applying Eq. (17) to bare bosons with effective
mass meff in a 2D-box potential, we have N ∼ yc ln yc, where
yc = 2meffSkBTc

(h̄π)2 . Fixing N and using Eq. (16) with z 	 1, we
have N0 = N − Ne ∼ yc ln yc − y ln y 	 (yc − y) ln yc where
y = 2meffSkBT

(h̄π)2 . For small positive Tc − T , we obtain

N0 ∼ N Tc−T

Tc
(for T � Tc). (22)

The coexistence of two solutions below the BEC transition
is the result of persistence of the incoherent state (μ̃ < 0)
for T � Tc. This persistence is, in turn, defined by the
condition g̃0N

2
0 = 1. Substituting Eq. (22) into this condition

and approximating g̃0 	 g0/(kBTc), we arrive at secondary
temperature scale T∗ for the disappearance of the incoherent
solution

Tc − T∗
Tc

	 kBTc

Ng
. (23)

The temperature range of the potential incoherence below
Tc defined by Eq. (23) increases with a smaller repulsive
interaction. It also increases with a smaller effective mass
and smaller confinement area through the dependence of
Tc [on the right-hand side of Eq. (23)] of these two
parameters.

Figure 9(a) shows the effect of the exciton confinement
area on Bose condensation and exciton statistics. A smaller
confinement area enables BEC at higher temperature. If
the confinement area is decreased at a fixed temperature, a
macroscopic occupation of the ground state is initiated while
the chemical potential is still negative [indicated by the curves
with plus symbols (red online)]. As the confinement area
decreases further, a self-consistent solution from Eq. (19b)
based on the negative chemical potential no longer exists. The
system then switches to the solution of Eq. (19a) based on the
positive chemical potential. As before, the degree of second
order coherence initially decreases with a smaller confinement
area for the negative chemical potential, but then jumps when
switching from negative to positive chemical potential. The
degree of second order coherence then decreases precipitously
as the confinement area is made smaller.

At zero temperature with repulsive exciton-exciton interac-
tion, all excitations do not simply condense into a fixed number
state. Interaction induces some occupation of single-particle
excited states. This is reflected in the nonzero expectation
values of the following quantities:

Ne =
∑
k �=0

〈a+
k ak〉 =

∑
k �=0

εk − μ + (g0 + gk)N0 − εk

2εk

, (24a)

|Je| =
∣∣∣∣∣1

2

∑
k �=0

gk〈a+
k a+

−k〉
∣∣∣∣∣ = 1

2

∑
k �=0

gk

gkN0

2εk

. (24b)

Figure 10 depicts Ne

N0
and |Je|

g0N0
as a function of the number

of particles in the ground state at zero temperature. As a result
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FIG. 9. (Color online) (a) shows the value of N0
Ntot

as a function of exciton confinement area S for three different choices of temperature,
where x = 8 · (ln(S/S0) + 2.697). The other parameters are S0,Ntot−0, mexc−0 mph−0, and gxp−0 defined below Eqs.(19). (b) shows the degree
of second order coherence for each solution in (a). Three curves with circles (blue online and denoted by Coh in legend) are obtained from
Eq. (19a) for positive chemical potential. Their degrees of second order coherence are shown by three curves with triangle dots (green online)
in (b). The other three curves with plus symbols (red online and denoted by Inc in legend) are obtained from Eq. (19b) for negative potential
and their degrees of second order coherence are three curves with diamonds (magenta online).

of the repulsive exciton-exciton interaction, some excitons
occupy nonzero wave vector states even for T = 0. As the
confinement area decreases, the dressed exciton repulsive
interaction is effectively increased and more particles are
forced into nonzero wave vector states. The nonzero magnitude
of Je is important to drive exciton coherence by introducing
nondiagonal coupling in the condensate as shown in Eq. (3c).
In the absence of such an interaction, the statistical distribution
of excitons in the ground state would be a pure number
state.

V. CONCLUSION

We have presented a model for the equilibrium quantum
statistics of a condensate of repulsively interacting bosons
in a two-dimensional trap. Unlike the standard Bogoliubov2

treatment that assumes coherent state formation (Poissonian
number distribution) in the ground state, we consider particle
correlations in the condensate exactly using a quantum anhar-
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FIG. 10. (Color online) The value of Ne

N0
and |Je |

g0N0
as a function

of ground state (at zero wave vector) particle number (N0) at zero
temperature. Here, the horizontal axis is x = ln(N0)/0.375. The other
parameters used, S0, mexc−0 mph−0, and gxp−0 are defined below
Eq. (d19).

monic oscillator model. The quantum statistical distribution
of particles in the condensate is determined by the sign
of the chemical potential relative to the zero-point energy
ε0 − g0/2, where g0 is the repulsion energy of ground state
dressed excitons. The sign of the chemical potential, in turn, is
qualitatively determined by the value of the dimensionless

parameter g0N
2
0

kBT
relative to unity, where N0 is the number

of particles in the single-particle ground state. When this
parameter exceeds unity, the number distribution has a nonzero
peak, otherwise the condensate exhibits a monotonic number
distribution. Unlike traditional Bogoliubov theory in which
a coherent ground state is assumed, our exact treatment of
condensate particle correlations is used to connect the chemical
potential to the condensate fraction and then derive physical
quantities involving the resulting excitation spectrum. As a
result of this more exact treatment we find that the chemical
potential undergoes a jump (in mean-field theory) between a
monotonic exciton distribution and a partially coherent one
at a temperature just below the BEC critical temperature. As
the temperature is lowered further, the condensate exhibits
more coherence and eventually sub-Poissonian fluctuations.
We focus on two physical properties, the condensate fraction
and the degree of second order coherence of Bose condensed
excitons as a function of temperature and confinement area
for various choices of the exciton-photon coupling constant,
the exciton-exciton repulsion, and the dressed exciton ef-
fective mass. Some common features appear for decreas-
ing temperature. The interacting Bose system exhibits a
macroscopic occupation of the single-particle ground state
below a critical temperature, and its degree of second order
coherence decreases from 2 (a typical value for thermal
distributed bosons) to 1 with decreasing temperature. This
is facilitated by a switching between two distinct mean-
field solutions at a temperature slightly below the onset of
BEC. Decreasing temperature below the switching point,
the number distribution of condensate particles evolves from
super-Poissonian to Poissonian and then to sub-Poissonian.
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The particle number fluctuations become smaller and smaller,
and the statistical distribution exhibits antibunching, with the
degree of second order coherence slightly below unity. We
find that decreasing the exciton-confinement area has a similar
effect to decreasing temperature. A striking feature of our
mean-field theory is the coexistence region (in temperature),
where two branches of solutions (one partially coherent and the
other incoherent) occur for a large exciton-photon coupling,
weak exciton-exciton repulsive interaction, and ultrasmall
effective mass.

Our model provides a starting point for a more precise self-
consistent mean-field treatment of the quantum expectation
value Je associated with bosons excited out of the single
particle ground state. This may lead to further quadrature
squeezing25 of the condensate. Nevertheless, our model
suggests that an excitonic condensate in a PBG-quantum
well may serve as a novel tunable source for nonclassical
states of light through the control of exciton quantum statis-
tics. Nonclassical light emission from the condensate may
be induced through a rapid switching of the photontic band
edge relative to the exciton radiative emission frequency. Band
edge frequency shifts have been demonstrated in a variety of
tunable photonic crystals.31,32 If the excitonic condensate is
suddenly switched into a regime of very high electromagnetic
density of states at the recombination frequency and the
switching time scale is short compared to the new equilibrium
time scale of the emitted photons, nonclassical emission may
be observable.
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APPENDIX: EVALUATION OF THE PARTITION
FUNCTION FOR SINGLE MODE BOSON MODEL

WITH REPULSIVE INTERACTION

To evaluate the partition function (10), we introduce the

integral representation e− 1
2 g̃n2 =

√
g̃

2π

∫ +∞
−∞ dx[e− 1

2 g̃(x2−2ixn)].
Then,

Z =
√

g̃

2π

∫ +∞

−∞
dx

[
e− 1

2 g̃x2
∑

n

e(μ̃+ig̃x)n

]

= lim
N→∞

√
g̃

2π

∫ +∞

−∞
dx

[
e− 1

2 g̃x2 e(μ̃+ig̃x)N − 1

e(μ̃+ig̃x) − 1

]
. (A1)

Provided Re(μ̃ + ig̃x) < 0, the limit is well defined and we
can analytically continue the integrand to the whole complex
plane except at the singularity ixs(xs = μ̃

g̃
)

Z =
√

g̃

2π

∫ +∞

−∞
dx[e−f (x)], (A2)

where

f (x) = 1
2 g̃x2 + ln[1 − eμ̃+ig̃x].

x
0

x
s

Im

Re

C
2

C
1

C
3

FIG. 11. Schematic diagram for deforming the original integra-
tion along the real axis for Eq. (A2) (i.e., the contour C1) to the
integration along the solid line passing through the saddle point x0

(denoted by the contour C2), with additional residue from the contour
C3 around the singularity xs .

The integrand has a saddle point on the imaginary axis at ix0

defined by

f ′(ix0) = 0 = ig̃x0 − ig̃eμ̃−g̃x0

1 − eμ̃−g̃x0
. (A3)

Equivalently, the saddle point occurs when

μ̃ = g̃x0 − ln

(
1 + 1

x0

)
. (A4)

In Fig. 11, as we shift the contour C1 of integration
from (−∞,+∞) to the contour C2(−∞ + ix0,+∞ + ix0)
that passes through the saddle point, a singularity is crossed
at xs = iμ̃

g̃
if μ̃ > 0. In this case, we must include the residue

contribution, Zs , of the singularity from the contour C3 when
using the steepest descent contour

Z =
{

Zn : μ̃ < 0,

Zn + Zs : μ̃ > 0,
(A5a)

Zn =
√

g̃

2π

∫ +∞

−∞
dx[e−f (x+ix0)], (A5b)

f (x + ix0) = 1

2
g̃(x + ix0)2 + ln

[
1 − x0

1 + x0
eig̃x

]
, (A5c)

Zs =
√

g̃

2π
e

1
2

μ̃2

g̃
2π

g̃
. (A5d)

Performing the second order Taylor expansion f (x) ≈
f (0) + 1

2f ′′(0)x2, where f (0) = − 1
2 g̃x2

0 − ln[1 + x0] and
f ′′(0) = g̃ + g̃2(x0 + x2

0 ). We obtain the saddle point approx-
imation Zn 	 ZA, where

ZA = e
1
2 g̃x2

0 +ln[1+x0][1 + g̃x0(1 + x0)]−1/2. (A6)

Equation (A6) provides an estimate of Zn under the saddle
point approximation. However, the exact integral given by
Eq. (A5b) is convergent. While the main contribution to Zn

is centered around x0, it is straightforward to evaluate the
correction to the saddle point approximation by numerical
means. For this we write

Zn =
√

g̃

2π

∫ +∞

−∞
dx{e−[f (0)+f (x)−f (0)]}. (A7)
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FIG. 12. (Color online) The value of ln(ZA) in the solid curve and
ln(ZB ) in dotted curve as a function of the saddle point x0 defined by
Eq. (A4) for a typical case of g̃ [S = (10 μm)2, T = 25 K, g = 7.5
meV]. Here x = (ln x0)/0.15. The variation of ln(ZB ) is much less
than the variation of ln(ZA) in the whole range of x0. The curve
of ln ZA + ln ZB is monotonically increasing. The exact solution x0

for a given N0 is shifted slightly due to the additional term ln ZB .
The maximum error of the first order derivative of ln Z (caused by
neglecting ln ZB ) is about 8% at the position x = 45 (g̃x2

0 = 1). In
addition, for the case of μ̃ > 0, the large weighting of Zs further
decreases the error caused by neglecting ln ZB .

It is straightforward to show that Zn = ZAZB , where

ZB =
[
f ′′(0)

2π

]1/2 ∫ +∞

−∞
dx

e−( 1
2 g̃x2+ig̃xx0)

1 + x0 − x0eig̃x

=
√

2

π

∫ +∞

0
dxRe

⎡
⎣

√
g̃ + g̃2

(
x2

0 + x0
)

1 + x0 − x0eig̃x
e− 1

2 g̃x2−ig̃xx0

⎤
⎦ .

(A8)

The solid line and dashed line in Fig. 12 show the values
of ln ZA and ln ZB for a typical value of g̃. In general ln ZB

exhibits a peak around the value of g̃x2
0 = 1, but approaches

constants for both large and small g̃x2
0 . The quantities of

physical interest are related to derivatives of ln Z. Clearly, the
derivative of ln ZB is much smaller than ln ZA. This justifies
our use of the saddle point approximation Zn 	 ZA.

The expectation value of the number of particles in the
ground state is

〈N0〉 = ∂

∂μ̃
ln Z =

{
Qnx

(1)
0 : μ̃ < 0,

WsNs + WnQnx
(1)
0 : μ̃ > 0,

(A9a)

where

Qn = ∂ ln Zn

∂μ̃
= 1

1 + x0
+ (g̃x0)2x0

1 + g̃x2
0

, (A9b)

x
(1)
0 ≡ ∂x0

∂μ̃
= x0 + x2

0

1 + g̃
(
x0 + x2

0

) , (A9c)

Ws = 1 − Wn = Zs

Zn + Zs

, (A9d)

Ns ≡ ∂ ln Zs

∂μ̃
= μ̃

g̃
= x0 − 1

g̃
ln

(
1 + 1

x0

)
. (A9e)

For a given average particle number 〈N0〉 in the ground
state, we can solve for x0 in Eq. (A9) and obtain the chemical
potential through the relation (A4). In addition, the evaluation
of the degree of second order coherence, that is, Eq. (14)
requires ∂〈N0〉

∂μ̃
which is obtained from Eq. (A9) and described

by

∂〈N0〉
∂μ̃

=
{

N (1)
n = Q(1)

n

(
x

(1)
0

)2 + Qnx
(1)
0 x

(2)
0 : g̃x2

0 < 1,

WsN
(1)
s + WnN

(1)
n + WsWn(Ns − Nn)2 : g̃x2

0 > 1,
(A10a)

Q(1)
n =

(
g̃ − 1

(1 + x0)2
− g̃

1 + g̃x2
0

+ 2(g̃x0)2(
1 + g̃x2

0

)2

)
, (A10b)

x
(2)
0 = 1 + 2x0[

1 + g̃
(
x0 + x2

0

)]2 , (A10c)

where N (1)
s = 1/g̃ and Nn ≡ ln Zn/∂μ̃.
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