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ABSTRACT

We examine the evolution of a field of internal waves launched by stratified flow over symmetric
topography in mean flows which reverse direction at some height above the surface. With the gradient
Richardson number at this “critical level” in the undisturbed flow restricted to values greater than 0.25, the
nonlinear interaction in the region is such that the surface strongly reflects large amplitude internal waves
incident upon it. When the critical level is located near certain discrete heights above the ground the incident
and reflected waves interfere constructively and the wave amplitude in the low levels is resonantly enhanced
by a large factor. These results are related to our previous analyses of the process by which breaking internal
waves are able to induce intense downslope windstorms,

1. Introduction

It is well-known that a plane parallel internal wave
propagating through a stratified parallel flow is mark-
edly affected at a “critical level” where its intrinsic
frequency is Doppler shifted to zero. Miles (1961)
provided the basis for the mathematical analysis
necessary t0 demonstrate that a small amplitude
internal wave would be completely absorbed at a
critical level provided that the local gradient Richard-
son number was sufficiently in excess of the same
critical value of 0.25 which governs the temporal
stability of the background flow. Booker and Breth-
erton (1967) applied Miles’ linear analysis to the
special case of standing internal waves launched by
stratified flow over topography, the same physical
problem as will concern us here. When the local
Richardson number at the critical level is less than
0.25 and dynamical instability is possible, incident
internal waves are “over-reflected” since the interac-
tion is such that the wave actually extracts energy
and momentum from the mean flow in the course of
the reflection process. Davis and Peltier (1976, 1977,
1979) have analyzed this mechanism in detail and
suggested that it may be responsible for certain mul-
tilayered turbulent structures which develop on oc-
casion in the nocturnal planetary boundary layer
during conditions supportive of shear instability.
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These central results of linear theory, that Ri > Y%
implies wave absorption and Ri < % implies wave
over-reflection at a critical level, are results which are
not liable to remain valid as the wave-induced flow
in the vicinity of the critical level develops and
nonlinear processes become increasingly important.
This fact is well understood in the context of the
corresponding problem of barotropic Rossby wave
propagation and barotropic instability. Warn and
Warn (1978) have clearly shown that a barotropic
Rossby wave incident on a critical level is eventually
strongly reflected under circumstances in which linear
theory predicts the mean state to be barotropically
stable. Although the detailed characteristics of the
critical layer for internal waves and barotropic Rossby
waves are quite different, we might nevertheless expect
them to behave similarly in this respect.

Our motivation for the calculations to be described
in this paper, which concern the interaction of a
spatially localized and topographically forced packet
of internal waves with the mean flow at a critical
layer, derives from results which we have previously
obtained from a series of studies of a related problem.
The previous calculations (Clark and Peltier, 1977;
Peltier and Clark, 1979, 1980, 1983) were also con-
cerned with topographically forced internal waves,
but did not include circumstances in which the mean
flow reversed direction and a critical layer exists. The
main results established by this previous work is that
when the forced internal wave has such large ampli-
tude that it “breaks,” in the sense that streamlines
(isentropes) locally overturn, then the wave amplitude
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in the underlying region is subsequently amplified to
an intensity which is enormously in excess of that
which would be predicted by Long’s (1953) model.
Although Long’s model correctly incorporates the
full nonlinear effect of the lower boundary condition
it is based upon the assumption of steady state
behavior. Our results have therefore established that
when the internal wave is forced to exceed critical
steepness then a new transient process is triggered
which leads to a large increase of wave amplitude in
the low levels. The analyses to be reported in this
paper are intended to further clarify the nature of
this new process.

In previous discussions of the numerically observed
amplification of the wave subsequent to breaking, we
suggested (e.g., Peltier and Clark, 1979) the possibility
that as streamlines locally overturn, the level of
breaking begins to appear as a critical level to the
wave which is incident upon it from below. This is a
reasonable suggestion because the wave deformed
mean state into which the additional disturbance
propagates is one in which the local horizontal velocity
actually does reverse direction. Also, since the local
temperature gradient changes from sub- to super-
adiabatic as streamlines overturn, the local gradient
Richardson number changes discontinuously from a
value near +%2 to a value near —%. Precisely how a
nonlinear wave will evolve in time, as this critical
condition (of streamline overturning) is exceeded, is
therefore unclear although the evolution may well be
influenced both by interaction of the wave propagating
upwards into the wave-induced region of static insta-
bility and by the local convective overturning in the
critical region itself. However, if there were substantial
reflection from the level of wave breaking and if this
reflection were coherent so that the incident and
reflected waves interfered constructively, then the
possibility clearly exists that the wavefield in the low
levels might amplify resonantly. In Peltier and Clark
(1983) a simple linear theory of this resonant ampli-
fication process was constructed and shown to provide
a plausible interpretation of the numerical data.

The basic assumption in this simple theory is that
the reflection from the “wave-induced critical layer”
(the level of breaking) is inphase with the incident
wave, since it is only under this condition that
resonant growth is possible. If this assumption is
correct then it implies that the nonlinear mountain
wave is in a sense “self-tuned” since the height at
which wave breaking occurs for symmetric topography
is always 3)A,/4 above the surface (Peltier and Clark,
1979), where A, is the vertical hydrostatic wavelength
of the wave, and since whenever wave breaking
occurs in the slowly varying mean flows which we
have analysed the wave always amplifies in the region
between this level and the ground. The question
which then arises is whether this special height is the
only one for which the incident and reflected waves
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interfere constructively. The calculations to be re-
ported here are intended as a direct test of this
fundamental assumption in the resonance hypothesis.
We will show by explicit computation of the evo-
lution of the mountain wave field in mean flows with
critical layers that only if the height of the reflecting
critical layer above the topography is 3A,/4 or some
integral number of vertical wavelengths in excess of
this, will the direct and reflected waves interfere
constructively to support a large amplitude resonant
response. The analyses therefore fully confirm our
original hypothesis as to the physical process which
underlies the numerically observed wave amplification
obtained in previous work on the mechanism of
severe downslope windstorm formation (Peltier and
Clark, 1979, 1983).

The paper is organized as follows. Section 2 contains
a very brief summary of the characteristics of the
numerical model and a succinct review of the most
important previous results on the amplification of
breaking internal waves. Section 3 briefly describes
the physical features of the new critical level calcu-
lations and the resulis of these calculations are pre-
sented in Section 4. Section 5 contains a discussion
of the implications of these results and some con-
cluding remarks.

2. Features of the numerical model and a summary
of previous results on breaking waves

A detailed description of the numerical model
which we have been employing in all of our work in
nonlinear mountain waves can be found in Clark
(1977). Modification of this general mesoscale model
necessary for the wave dynamics calculations have
been discussed in Clark and Peltier (1977) and other
papers referenced previously. The model is anelastic
and therefore based on the following approximation
to the continuity equation:

V- (pu) = 0, (1

in which p(z) is the initial (hydrostatic) background
density profile. This approximation suffices to elimi-
nate sound waves entirely as a possible physical
process in the hydrostatic system. The relations for
conservation of momentum and energy in this system
are, respectively,

_du

P = VP VTt g, )
_db
p=VH ©)

where the stress tensor 7 and the heat flux vector H
are given by
4

&)

H,' = 5Kha,0
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and the deformation tensor D; by
D,‘j = ajui + a,‘uj - 26,‘”,‘/3. (6)

Here u is the velocity vector, p’ and p’' the pressure
and density perturbations, 6 the potential temperature
and K, and K, the eddy diffusivities for momentum
and heat. The density perturbation is obtained from
the ideal gas law as p' = —p8'/6 + p'/c? where c? is
the square of the adiabatic sound speed in the hydro-
static background state p, p, 8. The two diffusivities
are usually taken equal so that the eddy Prandtl
number is unity and their local values are determined
through a first order closure as:

K, = (kAYDefl(1 —R)"2, Ri<0 (7).

where, for a two-dimensional model
IDef? = 2 (D12 + Dy?) + Digk. ®

The parameter A = (Ax- Az)"? is the grid resolution
where Ax and Az are the grid spacings in the hori-
zontal and vertical directions and k is a numerical
constant (see Lilly, 1962). The Richardson number
“employed in the turbulence parameterization in (7)
is

. dnb/dz
Ri=g “(Defy? - )]

The final crucial ingredient of the numerical model
is the method employed to introduce the topography.
We employ a tensor transformation to map the
domain with bottom topography z,(x) in two spatial
dimensions into a regular parallelepiped. If the original
coordinates are (x, z), the new coordinates (x, z) are
defined as

X=X

[z — 2]
ek

where H is the physical height of the numerical
model.

The other boundaries of this limited area model
also require special consideration. The top boundary
is important because internal waves incident upon it
from below will be perfectly reflected and contaminate
the integration unless care is taken. Although some
success has recently been obtained for steady state
internal wave problems using the local radiation
boundary condition method implemented by Béland
and Warn (1975) (e.g., see Klemp and Duran, 1983)
we have continued to employ a layer near the upper
boundary in which the viscosity rises smoothly to a
large value in order to effect the absorption necessary
to ensure that the integration in the lower levels
remains uncontaminated by reflected disturbances.
Although this method is wasteful of storage it is
efficient at preventing these undesirable reflections.

Ny
I
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The lateral boundaries are treated using a variant of
the method of extrapolation discussed by Orlanski
(1976). The computational domain is illustrated sche-
matically in Fig. 1. Before proceeding to describe the
new critical layer experiments which we have per-
formed with this model we will provide in what
follows a very brief summary of the previous results
which have motivated this new work.

Severe downslope windstorm simulations and ob-
servations suggest the development of regions of
convective overturning which are produced by the
strong surface forcing of internal waves. Although the
observations are not of sufficient detail to either
substantiate or refute the existence of regions of
overturning streamlines (e.g., Lilly and Klemp, 1980)
all of the recent numerical simulations have produced
such a result (e.g., Peltier and Clark, 1979; Klemp
and Duran, 1983; Clark and Farley, 1984). Similarly,
for the case of waves impinging on a critical layer
with parameters representative of atmospheric con-
ditions, one expects the nonlinear terms to lead to

"regions of overturning flow providing the waves are

of sufficient amplitude. Implicit in this discussion is
the assumption that the nonlinear terms dominate
over the effects of local dissipation in the convectively
unstable region. If, for example, the dissipation was
sufficiently strong to maintain the local Richardson
number at values exceeding 0.25, then instead of
wave reflection one would expect primarily wave
energy absorption and dissipation. Laboratory exper-
iments such as those of Koop (1981) appear to fall
in this latter category but due to the very large values

I/\ T
/ Viscous Absbrber

Ky Large

~N

-Lx/2 -a 0 Q

FI1G. 1. Schematic iltustration of the computational domain in
which the equations of the numerical model are integrated.
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of the gradient Richardson number (=150) and mean
shears (~0.5 s™!) his results are of questionable ap-
plicability to the conditions more typical of nature
which are considered in this paper. As discussed by
Koop (1981), his parameters fall in the range in
which the long time behavior is strongly influenced
by viscous effects. For example, the ratio of #y./t,
~ O(1) where #y; is the time scale at which nonlinear
effects become important and ¢, is the time
scale at which dissipation dominates. The critical
layer calculations of this paper have values of
tno/t, ~ O(107%) which clearly indicates the long
time importance of the nonlinear terms. Clark and
Farley (1984) have shown with their three-dimensional
simulations of a severe downslope windstorm case
that realistic direct simulation of turbulence in the
convectively unstable wave breaking region leads to
convective overturning and a realistic simulation of
regions of intense turbulence as obtained from the
aircraft observations of Lilly and Zipser (1972). This
work supports the notion that the nonlinear effects
play a dominant role in the wave breaking region.
Figure 2 shows vertical Reynolds stress profiles
through a field of standing internal waves in a mean
flow with constant Brunt-V4iisila frequency N = 0.99
X 1072 57! (N? = gd Inf/dz) and wind speed U = 4
m s~'. The Reynolds stress is defined by the correlation
Re(2) = (pou'w"), (11)
where the angle brackets denote integration in the
horizontal x-direction. Graphical depictions of the
field of internal waves itself are provided by Peltier
and Clark (1983). The topographic forcing employed

1507
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in the calculations which produced these stress profiles
was bell shaped with z,(x) = ha?/(x* + a?) where the
maximum height is # = 400 m and the topographic
half width is a = 3 km. Vertical profiles Re(z) are
drawn for two different sets of numerical calculations
in plates (a) and (b) with individual profiles drawn at
10 minute intervals beginning at time ¢ = 230 minutes
from the start of the run. Plate (a), which is for an
experiment numbered 34, shows the output from a
simulation which employed 97 vertical levels while
Plate (b) shows resulis for the same physical situation
but using a model with 192 vertical levels. Further
numerical details will be found in Peltier and Clark
(1983).

These flows were both established by first computing
the steady state wavefield forced by a uniform mean
flow of speed 5 m s™' and then decelerating this
mean flow to the final speed of 4 m s™*. The history
of the surface wave drag D, (0) defined as

D,(0) = + f_ z5(%) g{; dx (12)

for these two integrations is shown in Fig. (3). This
is just the force that the fluid exerts on the boundary
as a consequence of the downstiream pressure drop
which is established by the process of wave generation.
This must of course equal Re(0) and comparison of
the results in Figs. (2) and (3) shows that this required
balance is met by our numerical fields. Inspection of
the drag histories shown in Fig. 3 reveals that, follow-
ing the pericd of mean flow deceleration from a

speed of 5 to a speed of 4 m s™!, the surface wave
drag rises approximately linearly with time from a
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F1G. 2. Reynolds stress profiles through the field of standing waves. The results in plate (a) are from a model with
97 vertical levels while those in plate (b) are from a model with 192 vertical levels but otherwise identical to that
which produced the resuits in plate (a). The height z = 3X./4 at which the standing waves break is marked on each

plate.
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FIG. 3. Surface wave drag as a function of time for the two
integrations numbered 34 and 36 which produced the Reynolds
stress profiles shown in plates (a) and (b) of Fig. 2 respectively. The
time variation of the strength of the mean flow is shown at the top
of the figure. Following the time of deceleration from 5 to 4 m s™'
the surface wave drag rises rapidly. -

value near 0.6 X 10* kg s™2 to a value near 2 X 10*
kg s~2 over a timescale of approximately 200 minutes.
The importance of this result is that Long’s model
predicts that the surface wave drag should decrease
rather than increase when the mean flow speed is
decreased from 5 to 4 m s~!, The drag predicted by
Long’s model is also shown on the figure. It is
important to note that not only does the wave drag
increase upon mean flow deceleration but also that
.the factor by which the drag increases is in excess of
3; that is, the eventual drag in the nonlinearly equil-
ibrated state is several hundred percent greater than
predicted by a steady state nonlinear calculation.

In order to understand the mechanism which sup-
ports this drag amplification we need first to note
that, when the mean flow speed is decreased from 5
to 4 m s~', the Froude number Fr = NA/U increases
from 0.7924 to 0.9905. Analysis by Miles and Huppert
(1969) shows that, for the combination of mean flow
and topography which we are employing here, internal
waves break when Fr > 0.85. Thus deceleration of
the - mean flow from 5 to 4 m s™! induces wave
breaking, and according to our numerical results

when streamlines are forced to overturn the flow"

becomes strongly time dependent, and surface drag
increases precipitously.

The nature of the process which supports the drag
amplification is suggested by inspection of the stress
profiles in Fig. 2. As the surface drag begins to
amplify following the period of mean flow deceleration

at ¢ = 200 minutes the stress profile becomes strongly ~

divergent in the layer between the ground and the
height z = 3)./4 which is marked on the figure.
Peltier and Clark (1979) showed that this is precisely
the height at which streamlines first overturn. Above
this height the momentum flux in the wavefield
remains constant and nondivergent except in the
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layer above z = 8.79 km in which viscous absorption
has been enhanced. to prevent wave reflection from
the upper lid of the numerical domain. The thin
vertical lines on both plates (a) and (b) of Fig. 2 are
drawn for the stress Re = —0.45 X 10* kg s which
is precisely the stress predicted by Long’s model for
a wave of critical amplitude in which the streamline
through the height z = 3),/4 has an exactly vertical
orientation. :

The implications of these calculations, which are
discussed at considerably greater length by Peltier
and Clark (1983), should be quite clear. When the
internal wave is forced to exceed critical steepness,
an equilibration appears to occur at the level of
breaking which is such that the amplitude of the
wave transmitted through this level is restricted to
remain equal to that associated with precisely vertical
streamlines at the critical height. The forced distur-
bance which is in excess of that required to maintain
critical steepness is apparently reflected from this
level, as evidenced by the continuous growth of wave
amplitude in the cavity between z = 3),/4 and the
ground. As pointed out before, this growth is very
nearly linear in time and is fully explicable in terms
of the very simple theory outlined by Peltier and
Clark (1983). This theory shows that if the reflection
from the critical height is in phase with the incident
wave, then the superposed disturbance amplifies in
time like a classical harmonic oscillator which is
forced at its resonance frequency; this growth is of
course linear in time. »

The new numerical experiments to be described in
the following sections have been designed specifically
to investigate the validity of the assumptions upon
which this simple theory is based. What we will do
is use the fact that the nonlinear interaction between
a packet of internal waves and the mean flow in a
critical layer is such that reflection of the incident
wave does eventually occur. By varying the height of
the critical layer above the ground we will be able to
arbitrarily fix the length scale of the cavity in which
a wave of fixed frequency and vertical wavelength
exists. Our resonance hypothesis for the interpretation
of the data shown in Figs. 2 and 3 will clearly be
verified if we can show that resonant growth of the
disturbance in the cavity between the level of mean
flow reversal and the ground occurs only if the height
of the critical layer is z = 3)\,/4 or some integral
number of vertical wavelengths in excess of this.

3. Parameter settings for the family of critical layer
experiments

All of the new calculations which we will report
here have been carried out using a model with 202
grid points in the horizontal and 162 grid points in
the vertical. The grid dimensions have been fixed at
Ax = 400 m and Az = 50 m and the time step in
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all integrations is At = 5 s. We will discuss the nature
of the internal wave response is mean flows with the
properties

N=0.02s", (13a2)
U(z) = U, tanh[(z — z,)/b). (13b)

In (13b) b is the half-width of the shear layer through
which the strength of the mean flow changes from
—U, in the low levels to +U, in the upper levels and
z; is the height of the inflection point in the wind
profile at which the mean flow reverses direction. For
all of these new calculations the two former parameters
will be held fixed at the values

b = 600 m, (13c)
Uy=8ms™\. (13d)

Since the gradient Richardson number Ri = N2/(dU/
dz)? it is clear that its minimum value in the mean
flow (13a,b) occurs at the inflection point z = z;
where

(14)

so that the undisturbed flow is stable against the onset
of shear instability and linear theory predicts that a
plane internal wave with zero phase velocity whose
critical level is also at z = z; will be quite sirongly
absorbed.

The topographic forcing to be employed in these
new calculations will again be the bell shaped topog-
raphy

a*h
x*+a?

zy(x) =

(15)

and we will fix ¢ and /4 for all simulations at the
values
h = 300 m,

a =3 km.

(16a)
(16b)

In combination with (13) this implies a Froude
number for the flow in the low levels of

Nh
Fr=—=107
T A 5

(17)

which is less than the critical value of 0.85 above
which the forced internal waves would be expected
to break if the mean flow speed were equal to U, at
all heights. It is important to note however that Fr is
sufficiently close to this critical value that wavebreak-
ing may be induced readily by the decrease of wind-
speed in the critical layer region. The Froude number
is just 27 times the ratio of the maximum height of
the topography to the vertical hydrostatic wavelength
of the forced internal waves. It is also important to
note that because Ni/U, < 1 in the low levels we do
not expect any significant upstream blocking of the
incident stream to occur. This is important insofar
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as boundary conditions at the upsiream boundary
are concerned which would be difficult to implement
otherwise.

The only remaining parameter which we have yet
to specify to complete the characterization of the
basic state is the height z; of the level at which the
mean wind reverses direction and which is the critical
level for the spatially stationary internal waves forced
by the topography. The results which we will proceed
to report are for a sequence of 12 very long time
integrations of the model equations in which this is
the sole parameter which is aliered between experi-
ments. For obvious reasons we choose to specify this
critical level height in units of the vertical hydrostatic
wavelength of the internal waves which is A,
= 2xUy/N = 2.513 km on the asymptote of the
hyperbolic tangent mean state wind profile. Although
the local vertical wavelength clearly changes rapidly
as the wave approaches the critical height itself and
the vertical component of the group velocity tends to
zero (Booker and Bretherton, 1967) the asymptotic
wavelength does turn out to be the length scale in
terms of which the final results scale naturally. It may
also be significant to note that the half-width of the
shear layer b = 600 m is very nearly \,/4, and so the
mean state critical layer has been scaled as closely as
possible to the wave induced critical layer of the last
section.

The point of these experiments is that by raising
or lowering the height at which the wind reversal
occurs we will be able to increase or decrease the
height of critical level reflection. Since the wave is in
fact forced to break as it propagates towards the
height at which U = 0 we can force wave breaking
to occur in these models at an arbitrary distance
above the ground. The question which we wish to
answer is whether the amplitude of the response in
the region beneath the critical level is a strong function
of z;/\,, as we would expect of a system capable of
resonance. If we discover resonant amplification for
z; = 3\;/4 + n\;, where n is an integer but significantly
weaker response away from this condition then we
will have established the validity of the self-response
hypothesis advanced to explain the breaking wave
simulations discussed in the last section.

4. Resuits of the numerical simulations

Figure 4 shows surface wave drag histories for the
12 separate long time integrations of the model for
values of z;/A, varying from 0.75 to 1.85. In each
integration the model is initialized by setting the
velocity field equal to that determined by a stream-
function ¥ satisfying V’¥ = w, where w, is the
vorticity of the undisturbed parallel flow. This clearly
yields a potential flow when the background windfield
is uniform and w, = 0. The initial potential temper-
ature field is taken equal to the constant stability
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FIG. 4. Surface wave drag histories for each of the 12 long-time integrations of the model equations for mean
flows which reverse direction at some height above the ground. The nondimensional height of the critical level
z;/\; is marked adjacent to each curve. Note the precipitous decrease of surface drag which occurs when z;/); is
increased from 0.85 to 0.9 and the recovery which occurs upon further increase of this parameter.

background variation 8(z). This initialization enforces
a sufficiently smooth startup that severe contamination
of the integrations by initial transients does not occur.
It is important to note that in this more efficient
initialization the initial buoyancy field is zero which
ensures that the initial tendency of the vorticity also
vanishes.

Inspection of the individual drag histories in Fig.

4 shows that the surface drag is indeed a very strong
function of the critical level height z;/\;. For z;/A;
= 0.75 the surface drag continues to grow rapidly
following the startup phase of the simulation, even-
tually saturating near D,,(0) = 5.5 X 10* kg s™2. The
integrations for z;/\, = 0.8 and 0.85 also saturate
near the same value although in each of these cases
the rise to maximum amplitude is further delayed in
time as z;/\, increases.

When z;/), is increased further from 0.85 to0 0.9 a
marked change in the drag curve takes place. Rather
than continuing to rise following the startup phase
the drag now decreases rapidly and in a highly
oscillatory fashion to eventually reach an equilibrium
by ¢t = 2800At which is an order of magnitude lower
than the surface drag which occurred at z;/\, = 0.85.
The increase in critical level height required to effect
this enormous drag reduction is only of order 6%. As
the parameter z;/\, further increases from 0.9 to 1.0,
1.15, 1.25, 1.35, and 1.6 the drag curve saturates at
successively higher values but these are still a factor
of 2 or 3 below the level reached by the flows with
zi/\; = 0.75, 0.8, or 0.85. A further transition takes
place as z;/\, increases above z;/\, = 1.6.

The drag history for the flow with z;/\, = 1.7 is
fairly flat following startup to a time near 1600A¢
after which it falls and then rises to saturate at a
somewhat higher level. This same characteristic initial
time dependence of the drag history also occurs when
z;/\; = 1.75 although in this case the drag continues
to increase until it eventually saturates (with strong
time dependence) at a level very near that achieved

- by the flows with z;/A\, = 0.75, 0.80, and 0.85. The

change in slope of the drag history for the flow with
zi/\; = 1.75 near t = 3500At¢ is coincident with the
time at which the internal wave breaks beneath the
mean flow critical level at z = 3X,/4, so that the
development of this flow is a rather complex one
which includes elements peculiar to flows of the type
discussed in Section 2 of this paper as well as.the
pure critical level interaction which appears to have
been isolated for flows with z;/A, < 1.7. The drag
history for the simulation at z;/\, = 1.85 is again
characterized by a sharp rise to very high values
although in this case the curve peaks more rapidly
and exhibits intense time dependence thereafter.
The intense time dependence in this z;/A, = 1.85
case is attributed to an interaction between the two
levels of maximum stream line steepening, i.e., z;/\,
= 0.75 and 1.75. It is not surprising that the interaction
takes a considerably different form for a case where
zi/\;, > 1.75 than for a case where z;/A, < 1.75
because it is only when z; > 1.75 that we have two
levels of maximum stream line steepening below the
critical level. Thus the effects of surface wave launch-
ing, wave-induced resonance and critical level reflec-
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FiG. 5. Eventual “steady state” surface drag as a function of the
nondimensional distance of the critical level above the ground z;/
X;. Note the resonant peaks centered on z;/A; = 0.75 and z;/x,
= 1.75. The drag which would be predicted by Long’s model for a
height independent mean flow of speed equal to that on the lower
asymptote of the hyperbolic tangent wind profile is shown as the
dashed line.

tion give a strongly assymmetrical type of response
for finite variations of z; from the resonant peak
value of z;/\, = 1.75. Instead of a long time adjust-
ment to the critical level reflection, surface wave
forcing and a single level of self-induced wave reso-
nance (which is itself quite variable in time) for the
z;/A, = 1.70 case we have for the z;/\, = 1.85 case
the same long time adjustment which includes a
second level of self-induced wave resonance.
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It should be clear from the above discussion of the
drag histories shown in Fig. 4 that our results do very
strongly support the existence of a nonlinear resonance
in the field of internal waves and that this critical
level resonance exists only when z;/, is near % + n
as we had hoped might be the case. This idea is
strongly reinforced by the presentation of the data in
Fig. 5 for which we have plotied the wave drag in
the model at the end of the simulation, along with
an estimate of its variance, as a function of the
nondimensional critical layer height z;/A,. There
clearly are rather well defined resonant peaks near
zi/\, = 0.75 and z;/A, = 1.75. The dashed line on
Fig. 5 is the surface wave drag that would be predicted
by Long’s model for a flow with a height independent
wind speed of —8 m s™'.-Clearly when the system is
on resonance and the direct and reflected waves are
interfering constructively the response is very much
in excess of that predicted by Long’s model. It is also
interesting to note that the factor by which the wave
drag exceeds that predicted by Long’s model is the
same factor (between 2 and 3) by which the drag was
shown to increase in the breaking wave simulation
described in Section 2. It is clear that the same
physical process is at work in both of these internal
wave dominated flows. When the system is off reso-
nance the results in Fig. 5 show the expected decrease
in the surface drag below the prediction of Long’s
model due to the destructive interference between
the direct and reflected waves which characterizes
these geometric conditions.

Figure 6 illustrates the evolution of the Reynolds
stress profile for on-resonance and off-resonance flows
using for illustrative purposes those for z;/A, = 0.75,
1.15, and 1.75. In each of these cases the momentum
flux in the wave field drops to zero above the critical
level, implying the absence of any significant trans-
mission of internal waves through this level. For the
flows which are on-resonance the Reynolds stress also

8.00 g e v
[ (a) Zi/hg=75 - (b) Zi/hg =115 . (c) Zi/ Ay =175 4
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FI1G. 6. Evolution of the Reynolds stress profile for on-resonance flows with z;/x, = 0.75 and 1.75 and for the off-resonance flow with
z;/A; = 1.15. The profiles in the figure range in time from 0 to 2880A¢, 1440 to 2880A¢, and 2080 to 4240A: for plates (a) to (c),
respectively. Some of the profiles are sequentially numbered from earliest to latest. Note the strong divergence of the low level stress
profiles which develop in the on-resonance cases compared with the nondivergent profile which characterizes the off-resonance case.
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F1G. 7. Sequence of time slices through the evolving horizontal velocity field for the fiow with z;/\, = 0.75. The
times shown are (a) 1200.s, (b) 2000 s, (c) 2800 s, (d) 3600 s, (e) 4400 s, (f) 5200 s. The contour interval is 2.00 m
s~!, Positive values are indicated by solid contours and negative values by dashed contours. The zero contour is not
shown. The plot shows only a portion of the vertical domain whereas the full domain height is 8 km in all
experiments. Note the stagnant tongue of fluid protruding down from the critical level which develops in this
on-resonance case.

()
24 40




1 NOVEMBER 1984 T. L. CLARK AND W. R. PELTIER

Z (km)

Z (km)

Z (km)

24 40 -40 -24 -8 8 24 40
X (km)

FIG. 8. As in Fig. 7 but z;/A; = 1.15 and the times shown are (a) 2800 s, (b) 3600 s, (c) 4400 s, (d) 5200 s, (e)

6000 s, (f) 6800 s. Note that in this off-resonance case the stagnant tongue of fluid observed in Fig. 7 does not

develop. Rather two relatively stagnant but shallow deformations of the critical surface form upstream and
downstream of the mountain peak.
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diverges strongly as a function of time in the low pographic forcing in the calculations was horizontally
levels just as was found to be the case for the breaking sinusoidal then the strong vertical divergence of the
wave simulations described in Section 2. If the to- momentum flux across the critical level obtained in
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FIG. 9. As in Fig. 7 and 8 but for z;/A; = 1.75 and the times shown are (a) 2400 s, (b) 3200 s, (c) 4000 s, (d)
4800 s, (e) 5600 s, (f) 6400 s. Note that in this on-resonance case the stagnant tongue of fluid again appears as in
Fig. 7. -

each of these calculations would be taken to imply a in the present circumstances, in which the upstream
marked wave induced modification of the mean flow boundary conditions are.maintained, no such irre-
in this region. It is important to keep in mind that versible modification of the mean flow need be implied
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by the observed stress drop and no significant mean
flow modification is in fact obtained. This is because
the nonlinear interaction of the wave field with the
mean flow at the critical layer is such that no signif-
icant absorption takes place although linear theory
suggests that this should be the dominant process.
Rather than being absorbed, the incident waves are
simply reflected.

There is one additional feature of the on-resonance,
off-resonance flows which does warrant some detailed
discussion. This concerns the nature of the flow which
develops in the critical layer itself under these different
conditions. Figures 7, 8, and 9 each show a sequence
of snapshots of the total horizontal velocity field for
the simulations with z;/A, = 0.75 (on-resonance),
1.15 (off-resonance), and 1.75 (on resonance) with
the specific times in each case equally spaced and
spanning the later stages of evolution. Intercomparison
of these three sets of plates shows that the nature of
the flow which develops near the critical level is
strikingly different when the system is on-resonance
compared to when it is off-resonance. In each of the
on-resonance cases a tongue of stagnant fluid develops
in the critical layer immediately overhead of the
topography and protrudes into the underlying fluid.
The depth to which this region extends increases as
the surface drag increases. In the off-resonance case
this feature is entirely absent. Rather, the flow in the
critical level contains two regions in which the fluid
is relatively stagnant, one upstream of the topographic
maximum and the other downstream. As the system
moves closer to resonance these two stagnant regions
merge to produce the single deep stagnant tongue of
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fluid which is characteristic of the flow in the critical
layer itself in the resonant state. Although these
regions have some features in common with the
analysis of the nonlinear mountain wave critical layer
interaction presented by Marjolis and Su (1978), that
analysis was rather inconclusive since it was based
upon an a priori assumption of steady state behavior
and it proved impossible to obtain analytically con-
sistent results in the context of this assumption.

QOur reason for drawing attention to this feature of
the wave mean flow interaction at the critical layer
is because precisely the same feature has previously
been shown to be characteristic of the flows induced
by wave breaking in circumstances in which strong
downslope windstorms occur. The detailed analysis
by Peltier and Clark (1979) of the strong downslope
windstorm which occurred on 11 January 1972 in
Boulder, Colorado showed that when our numerical
model was initialized with upstream profiles of wind
and stability it very accurately predicted the flow
observed over the front range topography using in-
strumented aircraft. Figure 10 reproduces the isentrope
and total horizontal velocity fields predicted by the
numerical model afier an iniegration time of about
2 hours. These fields agree very well with the obser-
vations of this event reported by Lilly and Zipser
(1972) (e.g., see Lilly, 1978). The physical process
which leads to the large amplitude wave observed
and predicied by the model is the same breaking
wave process of low level resonant amplification
discussed in the context of simpler basic siate flows
in Section 2. This interaction inevitably produces a
deep stagnant tongue of air in the region where the
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F1G. 10. Isentrope (a) and total horizontal velocity field (b) produced by the numerical simulation of Peltier and
Clark (1979) of the severe downslope windstorm observed at Boulder, Colorado on 11 January 1972. Note the
vertically oriented deep stagnant tongue of fluid which develops in the region where the wave breaks in the lower
stratosphere and which then grows downward as the flow develops.
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streamlines are held vertical-—see the fields in Fig.
10. Precisely the same feature has now been shown
to characterize the evolution of the wave field in
mean. flows with critical layers when the distance of
the critical level above the ground is such that the
internal wave cavity is resonant. This is further strong
qualitative support for our resonant amplification
hypothesis as to the physical mechanism which sup-
ports the increase of wave intensity in the low levels
following breaking.

S. Conclusions

These analyses of the interaction of a forced packet
of internal waves with the mean flow at a critical
layer have established several interesting new results.
First, when the critical level is one at which the local
gradient Richardson number is significantly greater
than 0.25 the nonlinear interactions are such that no
significant absorption of wave momentum occurs in
flows forced by localized topography. Rather, the
internal waves are quite strongly reflected. Secondly,
when such a critical level is located at a height z
= 3X,/4 (or n), in excess of this) above the level of
forcing, the direct and reflected waves interfere con-
structively and an intense resonant growth of the
low-level wave field ensues. The observed resonance
is one which has a fairly broad peak so that one may
be 10%, or so, removed from the precise quantization
condition and still obtain strong wave amplification.

The demonstration that the wave guide is resonant
only if its vertical extent is near 3A,/4 (or some nA,
is excess of this) provides strong support for our
previous interpretation of the low-level wave ampli-
fication observed in breaking wave simulations. Since
we have previously established that the wave ampli-
fication which occurs subsequent to breaking is re-
quired to understand observations of severe downslope
windstorm occurrence, it is clear that the resonant
amplification process is rather fundamental to the
dynamics of such naturally occurring flows. Even
though the final characteristics of such flows do bear
a strong qualitative resemblance to those associated
with hydraulic jumps, the mechanism of wave trap-
ping effected at the level of supercritically steepened
streamlines is clearly crucial to understanding how
these flows evolve into the final states which are
observed in nature.
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