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1. — Introduction.

The «renormalization » of the Earth Sciences, which began in earnest
during the decade of the 60’s, was based upon the increasingly widespread
acceptance of the notion of continental drift—or at least the form of con-
tinental drift which came to be called sea floor spreading [1, 2]. This idea,
and later refinements and elaborations of it, now serves as the guiding prin-
ciple in terms of which much of geological and geophysical thinking is organized.

At the heart of this paradigm is the understanding that the Earth’s mantle
behaves as a viscous fluid when it is subject to a shear stress which is applied
over a sufficiently long time scale. Given this characteristic behaviour, it
follows that, if the radial temperature gradient in the mantle is sufficiently
in excess of the adiabatie, then the mantle will be convectively unstable. The
observed spreading of the sea floor away from the mid-ocean ridges is presumably
a surface manifestation of deep-seated mantle convection. This and other
aspects of the pattern of surface motions associated with convection has been
described kinematically within the framework of the set of ideas which has
come to be called «plate tectonics»[3,4]. In this picture the surface of the
Earth is divided into a relatively small number of rigid « plates » which interact
with each other only at their boundaries. Continents are carried passively
by the plates and drift with them over the Earth’s surface. Although the prac-
titioners of this view agree that plates are created by the rise of hot material
at the ocean ridges and are destroyed at trenches where cold material sinks,
they are not unanimous in their willingness to allow that there may be an
almost 1:1 relation between surface plates and deep-mantle convection cells.
This has led to a great deal of confusion concerning the connections hetween
the ideas of plate tectonics and mantle convection. Not the least of these
confusions concerns the question as to what makes the plates go [5-7].

That there may be a direct connection between mantle convection cells
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and surface plates does not seem at present to be widely accepted, although
it was certainly an explicit part of the spreading hypothesis advanced by
Hess [1]. It appears that one argument against aceceptance of this simple
model has been based upon the belief that the viscosity of the lower mantle
below a depth of about 650 km was extremely high [8, 9]. This has led to the
construction of models in which convection is confined to the wupper
mantle [10-12], but such models have several problems associated with them,
not the least of which concerns the aspect ratio of the circulation which is
required if each plate is to correspond roughly to the «roof » of a convection
cell. Yet it is only with such approximate correspondence that the reason
for plate motion ceases to be mysterious. Rather than abandoning the upper-
mantle convection models on account of this failure, in favour of the whole-
mantle view of Hess, Holmes [13] and others, their advocates have felt obliged
to make them tortuously complex. The extent of this complexity is best il-
lustrasted by the «two scale» models introduced in[14, 15]. It is tempting
to draw an analogy between such complex models of mantle dynamics and
models of planetary orbits in an Barth-centered solar system with their pro-
fusion of Ptolemaic epicycles!

In the discussion which follows, I have tried to review the main questions
which are at issue in attempting to connect the descriptive kinematic ideas
of plate tectonics with models of mantle dynamics. Since there have been several
recent and extensive surveys of the literature in this field [16-18], I have not
tried here to provide a similarly complete coverage, but rather have focussed
upon the questions which seem to me to be most important. In sect. 2 the ob-
gservational data which have combined to make the convection hypothesis
so compelling are briefly summarized. Section 3 is concerned with a discus-
sion of models of postglacial rebound and of their application to the problem
of inferring the profile of mantle viscosity. Sections 4 and 5 are respectively
devoted to discussions of convection in the laboratory and convection in the
Earth. Section 6 is concerned with a discussion of the importance of con-
vection in understanding the Earth’s thermal history and the variation of
temperature with depth in the mantle.

2. — Evidence for a mantle general circulation.

Although even the earliest geographers were impressed with the similarities
between the coastlines of South America and Africa, it remained for BuL-
LARD et al. [19] to deseribe the goodness of fit statistically and this was done
subsequent to the advance of the spreading hypothesis in[1]. A reconstruc-
tion of the original supercontinent Pangaea [20] is shown in fig. 1. That the
present continents may indeed have been produced by the break-up of Pangaea
was established using paleomagnetic methods [21, 22]. Reconstruction of the
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Fig. 1. — Reconstruction of the supercontinent Pangaea as it may have looked 200 million
years ago. The relative positions of the continents are based upon computer best fits
(from ref. [20]).

paleo pole paths from Europe and North America shows that they were similar
until the Triassic, when they diverged, an event interpreted as coinciding with
continental break-up.

2°1. Paleomagnetic evidence. — Paleomagnetic methods have in fact played
a dominant role in establishing the validity of the spreading hypothesis. In
1963 MorELY [unpublished] and VINE and MATHEWS [23], in the course of
studies of the pattern of magnetic anomalies over an ocean ridge, independently
realized that the patterns observed could be understood in terms of Hess’
theory of sea floor spreading. An example of the characteristic magnetic-
anomaly pattern which obtains over a ridge is shown in fig. 2 which is from [24].
MoreLY and VINE and MATHEws proposed that such characteristic patterns
were produced when hot material rising from the mantle beneath the ridge
crest was cooled below the Curie point, acquiring in the process an induced
magnetization in the local Earth’s magnetic field. The material reaching the
surface is normally or reversely magnetized depending upon the polarity of
the field at the time. The analogy has often been drawn between the sea floor,
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Fig. 2. — Pattern of magnetic anomalies over the Reykjanes Ridge southwest of

Iceland. The straight lines indicate the ridge axis and the central positive anomaly
(from ref. [24]).

spreading away from a mid-ocean ridge, and a strip of magnetic tape on which
the record of spreading has conveniently been written.

When the characteristic pattern of magnetic anomalies in the vieinity
of a ridge crest is combined with the time seale of geomagnetic reversals
established on land [25, 26], it is then possible to deduce the rate of spreading
as a function of location. Examples of such data [27] are shown in fie. 3 and
illustrate spreading rates of the sea floor which vary of (1= 5) em/y.

2°2. Seismic evidence and the ideas of plate tectonies. — If the methods of
paleomagnetism were responsible for establishing that hot mantle-derived
material is continuously rising under and spreading horizontally from the mid-
ocean ridges, it remained for seismology to demonstrate in an equally con-
vineing fashion that cold and relatively old material was elsewhere sinking
into the mantle. Prior to the advance of the sea floor spreading hypothesis
it had been suggested by BuNIOFF [28] that the deep ocean trenches were
regions where ocean floor was downthrust into the mantle along what are now



366 W. R. PELTIER

w224 ¥ BN
/ Licmly
oy East Pacific m'se/

)

> Fuca.

distance from axis of Ridge (km)

time scale (10%y)

Fig. 3. — Inferred normal and reversed boundaries in the crust plotted against the
time seale of geomagnetie reversals for various spreading ridges. The slopes are the
local spreading rates (from vef. [27]).

called Benioft zones which are defined by the locus of deep seismicity, Figure |
shows Benioft's data for the Kurile-Kamehatka region illustrating the geom-
etry of the process which is now referred to as the «subduction» of oceanie
lithosphere. In faet, it remained until the occurrence of the Alaska carthquake
in 1969 before Benioft’s suggestion was established ax fact [29, 30]. The analysis
of the earthquake source mechanism as a function of depth along the Benioff
zone using first motion data [31] has playved an important role in constraining
mantle convection models. The cessation of deep seismicity beyond a depth
of (630-: 700) km, where a discontinuity of the seismic parameters oceurs, and
the compressive nature of the deep focal mechanisms have been interpreted
as implying that the cold oceanic slab does not penetrate below this depth.
This unsubstantiated inferpretation has been the main observational evidence
invoked to support the notion that convection is confined to the upper mantle.

On the basis of global distributions of seismicity such as discussed by
IsACKs et al. [32], it was recognized that the system of ridges and trenches,
and their important interconnections via transform faults [33], was continuous
over the surface of the Earth and divided this surface into a relatively small
number of « plates», the interiors of which were relatively devoid of seismicity.
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Fig. 4. — Location map and composite profile of  Kurile-Kamehatka carthquake

sequences (from ref. [28]).,

An example of a recently compiled global seismicity map is shown in fig. 5
and a map of plate boundaries is illustrated in fig. 6. The idea of plate tectonies
is basically to desceribe geological processes such as mountain building and
voleanism as consequences of the interactions wmong this relatively small
number (12) of plates. It is supposed that all interactions take place at plate
boundaries which consist of segments of the three characteristic forms:
spreading ridges, deep ocean trenches (subduction zones) and transforms.
Plate tectonies, as developed in|[3, 1, 34, 35], is a purely kinematic though
nevertheless useful deseription of the present pattern of horizontal motion of
material on the Earth’s surface. Within the context of this « theory » neither
the existence of the plates nor the reason for their relative motion are explained.
Although the approximately 1:1 relation between conveetion cells and plates
envisioned by Huss would appear to provide a natural explanation for the
motion of the plates, and their existence can be readily understood in terms of
convection in a fluid whose viscosity is a strong funetion of temperature, this
is not a view which is accepted by some of those who espouse both convection
and plate tectonies[14, 15].
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Fig. 5. — Global map of seismic epicentres for all earthquakes in the magnitude range
4.5 5.5 with depths (0-+-700) km. Note the correlation between seismicity and plate
boundaries. (Based on NOAA data tape, Van der Grinten projection, Goddard Space
Flight Center, 1978.)

2'3. Other signatures of the eirculation. — Besides the information from paleo-
magnetism and seismology there are other geophysical data which are able to
contribute usefully in providing constraints upon the nature of the circulation
in the mantle. One of the most interesting of these sets of data consists of the
observed variations of heat flow and ocean bathymetry as a function of ocean
floor age away from the ridge crest. Examples of such data taken from [36]
are shown in fig. 7 and 8 for bathymetry and heat flow, respectively. When
plotted as a function of the square root of the age of the lithosphere, both of
these sets of data fall essentially on straight lines, although thereis a systematic
departure for ages > 10° years. McKENZIE and ScLATER [37] have shown that
this characteristic variation is expected on the basis of a simple model consisting
of a plate (the lithosphere) of constant thickness spreading at a uniform rate
and subject to a constant temperature at its end (the ridge crest). In this
model the topography is assumed to be isostatically compensated and this



369

AND VISCOSITY

CTION

-

NVE

MANTLE CO

“(afl nviaory (1 J ‘uorpoaloxd uejurin zop uwp ‘Ayewog omqdreiSosy) euoneN ot £q cLel @ ‘prosy (poishyg
Y 1o poseq ‘LT ‘To1ua) I eovdg pieppoy)  A}1A1}0® OTUBDO[OA PUE 2T1U040d) Jo puw senrepunoq aye(d yo dew eqorn — 9 Sy

£
Parpamarl R0 B0 | [R0Y Uiem B30 S0uE 308 Bunay " o I _ 15}
AINE eRCAuACE o e By Bwaou 0 Butl B0 |y e mt
WD Iun ke a0 28
BNDU BIBGE PRYSDR MU0 (MD) K INB; BAL3D solol - - -
WIOI MOAR UD GIFE BUOT JENIYLIAG KD UOIINPANS
parnoisush —aast S
UMD UM U0 SUBITE (Djsauuod pun sabpis aagay =t
aNIoT = 2iD|g4 J1ydiD Uy -
dd y e =N
L 01035
- ) N tb_?ﬁ sim q_l.l\\.
2 - . A i
Ll a i, S v ol
3 8, : \.,.oa W Y2impuog
o ood ! L
2% . vorsny | 1%
T =

r SO T PR
3

nYy o UBINI 4y i

M ™
A
S 3 a4
. s

% “ﬁ ol

N O

.

2io0)g A.nm‘.

oy &

204

Jjidoyg

B14 .

- LXXVIII

0

24 - Rendiconti



370 W. R. PELTIER

1000 - =
2000

-

ok
3000F -\

i % I
E “:\
5 4000+ Ny
g .
SR S
ar -
5000 il Ty
g
L '!m?‘! ?ﬁ%&
. x‘“.\_‘»— I‘:“:‘—Y-h'—h It e
6000 SN - - | S N
7000 : B . ey
0 20 20 ) 80 100 120 140 160 180

age (10° y BP)

Fig. 7. — Plot of individual depth measurements used in calculating mean depths and
depths at DSDP sites for the North Pacific (from ref. [36]): $ mean and standard
deviation; o individual depth values from profiles; a DSDP sites with ages from
magnetic anomalies; H DSDP sites with biostratigraphic ages; theoretical
depth, plate model; — — — linear ¢ relation.

assumption is born out by the observed gravity field. Why the lithosphere is
taken to be of constant thickness is not explained and there is no explicit hypoth-
esis made regarding the reason for the spreading. It is not recognized ex-
plicitly in either [36] or [37] that the /7 dependence of both heat flow and bathy-
metry also follows from the assumption that the ocean floor constitutes the
cold thermal boundary layer of large-scale mantle convection cells. This follows
from the boundary layer theory for convection at high Rayleigh and Prandtl
numbers which will be discussed further in subsect. 4'4. Regarding the heat
flow data shown in fig. 8, the reason for the large scatter of these data in the
vicinity of the ridge crest is now understood to be due to the fact that a con-
siderable fraction of the vertical heat transport may be effected by thermal
convection of sea water though its near-surface host rock.

In the vicinity of a trench, where oceanic lithosphere is descending into
the mantle, perhaps the most striking feature is the gravity anomaly on a profile
perpendicular to the trench axis. In fig. 9 we show data from TALWANT et al. [38]
for Tonga with superimposed model calculations due to GriGGs[39]. The
modelling shows that the characteristic form of the observed anomaly cannot
be fitted by the topography alone, but is easily explained by the existence
beneath the trench of a slab of cold high-density material dipping at the angle
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Fig. 8. — Heat flow as a function of age of the ocean floor indicating initial decay
as ¢~% (from ref. [36]): o Pacific, o South Atlantic, a Indian, & «reliable» means
from Pacifie, theoretical heat flow, plate model.
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Fig. 9. — Gravity anomaly in milligal as a function of distance from the trench axis.
A model with a dipping cold slab under the trench fits the data (from ref. [39]);
no transition, p=45° v=8emfy, A=2000km, o traverse ~20°8, o traverse
~ 25° 8.
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of the observed seismic Benioff zone. DModels such as these were introduced
originally by McKENZIE [40] and MINEAR and Toxs0z[41]. The form of the
gravity anomaly over the Tonga trench is similar to those found in other such
locations.

On a more global scale the free-air anomaly data have a far less diagnostic
character. Figure 10 is a global free-air anomaly map taken from Kaura [42]

Fig. 10. — Global free-air anomalies in milligal referred to a fifth-degree figure (from
ref. [42]): ——— compression, tension, — — — approximately 3000 fathom.

referred to a fifth-degree figure and calculated from the spherical harmonic
coefficients of the gravitational field using degrees 6-16 from GAPOSCHKIN
and LAMBECK [43]. There is no clear correlation between the pattern of
anomalies for such large wavelengths and the global system of ridges, trenches
and transforms. One feature which is apparent on this scale, however, is the
sequence of negative anomalies over the northern-hemisphere land masses
near the pole. There is an anomaly of — 26 mGal over the Hudson Bay and
one of — 15 mGal over Fennoscandia. These negative anomalies are presumably
due to present-day isostatic disequilibrium produced by the disintegration of
the large-scale Pleistocene ice sheets which existed in these locations, a process
which began ca. 20 000 years BP (before present). We will see in the next section
that the interpretation of these data, and of other information related to them,
provides fundamental information which is required in the construction of
mantle convection models.

One last piece of observational evidence which we should call attention
to is clear by inspection of fig. 6. Although most of the global voleanic activity
is closely associated with plate boundaries, there is nevertheless considerable
activity in plate interiors and the explanation of this activity has remained
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enigmatic. The Hawaiian chain of voleanic islands is the standard example,
but considerable activity is also found in the centre of the African plate. The
appearance of the Hawaiian and Emperor chains is such that they seem to
have been formed by the motion of a rigid plate over a « hot spot » fixed in
the mantle. The spreading rate which one infers from the relative ages of the
islands does in fact agree with that deduced by independent means.
MORGAN [44-46] has attached special significance to the global distribution
of plume traces.

2'4. The convection hypothesis, — The convection hypothesis of drift and
spreading is clearly able to explain a priori the most important of the obser-
vations discussed above, which is that hot material rises in the mantle and
cold material sinks! That it is some form of convective circulation that main-
tains the plates in their relative motion, I would suggest, is indisputable, The
questions which remain are more subtle ones, such as the extent to which the
mantle participates in the circulation, and whether the cireulation is main-
tained by the decay of radioactive heat sources, as is most often assumed [16,17],
or whether it is driven substantially by the primodial heat content of the planet
following a hot formation, as has recently been suggested in [47]. Another
issue which has never been resolved concerns the degree of coupling which
exists between the plates and the underlying mantle. One idea duc to Br-
SASSER [48], which has persisted in the literature, is that the plates are es-
sentially decoupled from the mantle beneath them. Once this idea is accepted,
the question of what drives the plates can become perplexing indeed! This
is clearly not the situation envisioned by Hess [1], who initially at least seemed
to advocate the idea of whole-mantle convection with a roughly 1:1 relation
between plates and convection cells. Figure 11, taken from Hess’ article,
illustrates this view. In the sections which follow this issue will provide one
of the strands of continuity.

| p—e ]
1000 km

Fig. 11. — S8ketch of the eonveelive cireulation envisioned by Hess [1]. Convection
currents fill the entire mantle.
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3. — The mantle as a fluid: viscosity estimates from postglacial rebound.

As mentioned in the introduction, the ideas of plate tectonics and mantle
convection depend upon the assumption that the Iarth’s mantle deforms as
a viscous fluid for processes of sufficiently long time scale. In order to verify
this assumption, we require independent data and such is available by con-
sideration of the response of the Earth to the massive continental deglaciations
which oceurred at the end of the last ice age. We show here that the relax-
ation data ean be understood in terms of a Newtonian viscous Earth model and
employ the model to infer the characteristic viscosity profile of the planetary
interior. The question as to whether the magnitude of the viscosity which we
obtain is compatible with the conveetion hypothesis is of course the crucial
one and is addressed in detail in sect. 4 and 5.

3'1. Glacial isostatic adjustment: the data. — The most reliable information
concerning the response of the Harth to deglaciation consists of relative-sea-
level data which constitute local records of the time-dependent separation
between the geoid and the surface of the solid Earth. Such data are obtained
from flights of uplifted or drowned beaches, such as that shownin fig. 12, which
is found in the Richmond Gulf of Hudson Bay. The age of each beach in the

Fig. 12. — Photograph of a stairease of raised beaches in the Richmond Gulf of Hudson
Bay (photo courtesy of Prof. C. HiLLAIRE-MARCEL).
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Fig. 13. — Relaxation curve from the 4C dates for the Richmond Gulf beaches compared
with a theoretical calculation (solid curve). The data are from ref. [49].

sequence can be determined using radiocarbon dating and, if the height of each
horizon above present-day sea level is plotted as a function of its age, then
one obtains a relaxation curve such as the one shown in fig. 13 for the beaches
in fig. 12 [49]. The solid curve on this figure is the prediction of RSL (relative
sea level) for this location from a theoretical model which will be described
below.

When one considers such relaxation data from a global perspective, a striking
pattern emerges. In fig. 14 we show the geographical distribution of 0 dated

Tig. 14, — Geographical distribution of beach material in the age range (0--5)-103
BP plotted according to its disposition with respect to present-day sea level. Note
that the regions of emergence correspond to negative anomalies in the global free-air
anomaly map shown in fig. 10 (from ref. [50]). [Z%I region of postglacial rebound,
=7] peripheral zone of submergence, e dated marine shells above present sea level,
4 dated terrestrial peats below present sea level.
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beach material in the age range (0--5)-10* BP plotted on the basis of whether
this material is found above or below present-day sea level [50]. In the regions
of open circles over the Hudson Bay and Fennoscandia the present sense of
the vertical motion is up (rebound), while in the immediately peripheral re-
gions shown as solid triangles the sense is down (submergence). This pattern
is one which any model of glacial isostasy must be able to reproduce. It is
a pattern which may be easily understood on the basis of mass conservation
if the Barth behaves as an incompressible viscous fluid on such long time secales.
While the Pleistocene ice sheets were at their maximum extent, the gravitational
interaction between them and the planet resulted in a depression of the surface
beneath them. The matter forced from beneath the ice sheets collected in
the immediately peripheral region where the local radius of the planet was
increased. When the ice sheets melted, mantle material flowed from the bulge
towards the depression in order to restore gravitational equilibrium. This
resulted in the collapse of the peripheral region (submergence of the land there)
and the uplift of the surface of the solid Earth where it was initially ice covered
(rebound).

From the relaxation curve shown in fig. 13 we can obtain an estimate of
mantle viseosity immediately if we assume the Earth to be a uniform New-
tonian viseous sphere. For such a sphere, with constant density and viscosity,
the free decay time for a spherical harmonic deformation of degree I is just
7T = (v/pg,)(21* 4 4l + 3)/la [51], where » and p are viscosity and density, g,
is the surface gravitational acceleration, and « is the radius. Using parameters
appropriate for the Earth, taking I~ 5 from the scale of the Laurentide ice
sheet [52] and using the observed relaxation time 7~2.5-10° years from
fig. 13, we obtain » =~ 10%* poise (CGS units) for the viscosity of the mantle.
This estimate may be erude and we are obliged to refine it.

3'2. Anelastic Earth models. — The first step in this process of refinement
is to improve the Barth model. Clearly the Earth does not behave as a viscous
fluid on all time seales, it rather behaves as an elastic body for short-time-seale
deformations and as a viscous fluid for processes of sufficiently long time seale.
The simplest viscoelastic model which can accommodate such behaviour is
that for a linear Maxwell solid. The stress-strain relation for this material [51] is

(1) Ty = A(S) €11 0 -+ 2n(s) €,

in the Laplace transform domain with s the Laplace transform variable. The
compliances A(s) and u(s) are

_ As 4 pHly
(Eﬂ) ‘1(8) _ 8 _}_‘H}f.v 2
(20) pe)= "7

s+ ufv !
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where 4 and u are the usual clastic Lamé parameters and K = 4 4 34 is in-
dependent of s. From (2) it is clear that for t< I’ = »/u the material behaves
as a compressible solid, while for ¢ > T it behaves as an incompressible viscous
fluid to the extent that A(s)-é,. — — p, a constant. For the Earth, the Maxwell
time T ~ 200 years in a region where the viscosity » =~ 1022 poise. Visco-
elastie processes which act on time scales less than this, such as those which
produce seismic veloeity dispersion and determine the @’s of elastic gravitational
normal modes, will not be correctly deseribed by the constitutive relation (1).

The dynamieal behaviour of an Earth model which consists of material
deseribed by (1) is governed by the following linearized and Laplace trans-
formed equations for momentum balance and for the perturbation of the grav-
itational potential

(3a) V-7 —V(ggii-e,) — oVG 4 gV -(pl)e, =0,
(3b) V2§ = — 476V - (pi) ,

where p = p(r) is the density field in the basic hydrostatic equilibrium con-
figuration, g = g(r) is the corresponding gravitational acceleration, u is the
displacement field, ¢ the perturbation of the ambient gravitational potential
and & the gravitational constant. In the momentum equation (3a) the stress
tensor 7 is given by (1) and the inertial force has been suppressed beeause of
the long time scale of the phenomenon which concerns us.

We may find primitive solutions to (3) for (u, ¢) when the Earth is deformed
by gravitational interaction with a point mass load which is placed on its sur-
face at { = 0 and instantaneously removed. If the physical properties of the
interior are functions of + only, then we may expand u and ¢ as

(4a) u = i (Un{'i‘, s)P,(cosO)e, + V,(r,s) af;ﬂ (cos 0)88) ,
n=0 C

(4b) o = 3 oulr, 8) P.(cosB) .
n={

Subject to the appropriate boundary condition on » = « we may construct
solutions for the spectral amplitudes U,, V,, @, by solving a set of six coupled
ordinary differential equations using a shooting method [51]. This set of equa-
tions is the same as that which deseribes the elastic gravitational (spheroidal)
free oscillations and is shown explicitly in the notes by GILBERT in this volume.
A useful representation of these solutions on the FEarth’s surface is in the fol-
lowing form:

U, ha(ry 8)/g
(5) Vol = ‘P%ai("') L(r, "‘)[g )

Pi,n kn('}'; s)
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where ¢, = ¢, -+ ¢, and ¢, , is the perturbation of the gravitational potential
due to the point mass on the surface, which is independent of s because the
point mass is applied as a Dirac delta-function in the time domain. The triplet
of dimensionless scalars (h,,l,, k,) constitute the nondimensional spectral
form of the impulse response of the system. They are the viscoelastic analogues
of the surface load « Love » numbers of elasticity. An example of the spectral
surface h,(a, s) is shown in fig. 15 for an Earth model in which » = co to a
depth of 112.5 km (the lithosphere), » = 1022 poise between the base of the
lithosphere and the core-mantle boundary, and » = 0 throughout the core.
The elastic structure of the model (o(r), u(r), A(r)) fits the free-oscillation
data [52]. In fig. 15 I have in fact plotted h)(a,s) = h,(a, s) — kE, where AE
is the large-s elastic asymptote for each value of n, as discussed in [51].
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Fig. 15. — Laplace transform domain relaxation surface. Note that, as n— oo, b —0
and the viscous relaxation is entirely suppressed.

It may be shown directly [53] that these spectra have exact normal-mode
expansions of the form

(6) ha(a, 8) = > —* = # hE
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where s} are a set of poles (a different set for each ) which lie on the negative
real axis in the complex s-plane. The »] are simply the residues at these poles
and thus measure the extent to whieh a given normal mode is excited by the
point forcing. In fig. 16 is shown a sequence of relaxation diagrams for a series
of illustrative Earth models in order to demonstrate the effect upon the modal
structure of each of the main features of the planetary model [54].
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TFig. 16. — Relaxation diagrams for the four Earth models deseribed in the text. The
relaxation time 7= s! and times are measured in units of 10® years.

Figure 16a) is the relaxation diagram for an Earth model in which all
of o, 7, u, v are constant and illustrates the relationship between relaxation
time 7 = s~ and spherical wave number n = | discussed above (all times are
nondimensionalized with a characteristic time of 10® years). For sufficiently
large 1, 7 increases linearly with ! in accord with the prediction of the equi-
valent half-space model which gives v = 2vk,/g, 0, where L, is the horizontal
wave number. In fig. 16b) we show the effect upon the relaxation spectrum
of including a lithosphere at the surface of the planet and for illustration the
the viscosity in this region has been taken to be infinite and the thickness equal
to 112.5 km. Two effects are apparent. Firstly the presence of the lithosphere
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reduces the relaxation times for the short deformation wavelengths (large 1).
Secondly it infroduces a completely new relaxation time for each valuc of l
so that for cach wavelength there are now two accessible modes. The two
modes have been labelled M and L on the figure, the first corresponding to
mantle, the second to lithosphere. The two modal lines coalesce at large I,
a mathematical manifestation of the physically intuitive result that for suf-
ficiently short wavelength all viscous gravitational relaxation is suppressed.
Such short deformation wavelengths are supported elastically. In fig. 16¢)
we show a relaxation diagram for an Earth model with an inviseid core, @
constant-viscosity mantle and no lithosphere. Again, the effect of the presence
of the core, with a strong density jump across the core-mantle boundary, is
to introduce a second relaxation time for each value of I. For this model both
modes have relaxation time increasing as the wavelength decreases. In fig. 16d)
we show the relaxation diagram for a complete Earth model. This has a 4,
t, ¢ structure which is identical to 10664 of Gilbert and Dziewonski[52]. In
addition it has an inviscid core and a lithosphere which is 112.5 km thick.
Throughout the mantle the viscosity is 1022 poise. Inspection of this figure
shows that the relaxation diagram contains each of the three modal branches
discussed above, but that there are additional modes due to the strong density
jumps in the mantle.

The viscoelastic nature of the real Barth is extremely important insofar
as the understanding of observed relaxation data is concerned. The effect
of the elastic lithosphere provides an interesting case in point and we will
proceed here to demonstrate that such a layer exists and to determine its thick-
ness. The thickness of the surficial elastic lithosphere is a very useful datum
in the convection hypothesis, in fact we shall argue in later sections that it
provides an accurate measure of the thickness of the thermal boundary layer
of the mantle conveetive circulation.

Figure 17 shows the relaxation spectrum determined by McCoNNELL [8] from
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Fig. 17. — Relaxation speetrum from the Fennoseandian rebound data from ref. [8].
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the Fennoscandian rebound data. The points to note are that the longest
wavelengths show a relaxation time of about 4-10° years and that there is a
knee in the relaxation spectrum such that for wavelengths less than about
500 km there is a sharp decrease in relaxation time. This is precisely the effect
expected of the presence of a thin elastic layer (lithosphere) on the surface, as
demonstrated in fig. 16. We may further constrain the thickness of the elastic
layer by invoking Crittenden’s [54] data for Pleistocene Lake Bonneville, which
imply a relaxation time v~ 5000 years for this feature, which has an effective
U of about 150, i.e. a horizontal scale which is an order of magnitude less than
in Fennoscandia. These data together fix the effective elastic thickness of
the continental lithosphere to be somewhat in excess of 100 km.

Knowing the relaxation surfaces h,(a, s), k,(a, s) and the relaxation spectra

§7, we can invert (6) into the time domain to get

(7) h(a,t) = 2 ry exp[—s7t] + hES(1),

from which we may construct space-time Green functions of the problem for
various signatures of the response. We find the Heaviside form of the functions
most useful and the spectral amplitudes for this form may be obtained from (7)
by convolution with a unit step. This yields (suppressing a)

(8) P(O) = 3 (1 —exp [—st]) + BE = B (1) + B2
i

i

We have previously shown [53] that the Green funections for radial displace-
ment, gravity anomaly and the perturbation of the gravitational potential are

(9a) uo, ) = S 15 (1) P (cos 6)
(90) AG0, 1) =S 3 [n—2K5(0) — (n + DEXD)] Py(cos6) ,
(90) o0, 1) — Tg i (1 + KX(t) — hE(t)) Po(cos 0)

respectively. The viscous part of «7(f, ¢) is shown in fig. 18 for an Earth model
which has constant mantle viscosity and a lithosphere which is 112.5 km thick.
Inspection of this Green function shows that it does contain the symmetry
required to explain the rebound pattern of fig. 14. At small 0, U < 0, while,
for sufficiently large 6, "> 0, which is the region of the peripheral bulge
discussed previously. We proceed to show how (9) may be employed to make
RSL predictions.
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Tig. 18. — Viscous part of the Green funetion for radial displacement for an Earth
model with eonstant mantle viscosity and a lithosphere which is 112.5 km thick. The
response has been normalized by multiplication with afl to remove the effeet of the
geometrie singularity at §=0 for plotting.

3'3. Gravitationally self-consistent sea level calculations. — We need a theory
which will calculate relative sea level directly, so that we may predict relax-
ation curves such as that shown in fig. 13. The problem of glacial isostasy
consists of deseribing the gravitational interaction between the three com-
ponent parts of the system: the anelastic Earth, the ice sheets on its surface
and the oceans into which the ice sheets discharge their meltwater. The strategy
which we adopt to solve this problem is as follows. Suppose we knew the melting
histories of the major Pleistocene ice sheets exactly and let us enquire as to
where in the global oceans the meltwater from these ice sheets must go when
they disintegrate. So long as the perturbations of the gravitational potential
produced by this melting event are sufficiently small, it is in fact possible to
answer this question exactly. The key idea is the recognition that water must
redistribute itself in the oceans in such a way that the oceanic surface remains
an equipotential surface [55-57].

We can caleulate the perturbations of the potential field which are produced
by both the ice and the ocean parts of the surface load simply by convolving
this surface load with the potential perturbation Green’s function (9¢). Insisting
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that the ice-water surface load conserves mass and that the potential on the
surface of the ocean remains constant at all times (the value of the constant
changes), we may obtain an integral equation for the direct caleulation of relative
sea level. The construetion of this integral equation and a deseription of the
numerical algorithm used for its solution has been described in [56]. A schem-
atic form of this equation is

(10) S={JI¢—H*L+{;W£H*S-{ ¢,
q 1 7 o

where § is exactly the relative-sea-level variation, an example of which was
seen in fig. 13. In writing (10) I have suppressed the melting history for con-
venience. g, is the density of ice, p, that of water, and C is a constant which
is fixed by the requirement of mass conservation. Clearly (10) is an integral
equation since the convolution operations #x are integral relations (I means
« over the ice », and O means « over the oceans ») and thus the unknown relative
sea level S appears both on the left and under the integral on the right.

The input to (10) is just L, the deglaciation history, and the methods which
are employed to obtain a priori estimates of this field are discussed in[58].
Given L, we seek to find »(r) such that the solutions to (10) fit the global set
of relaxation data. Since both L and » are imperfectly known initially, the
inverse problem is nonlinear, but, if we can find a solution (L, »(r)) which is
linearly close to a solution, then we can converge iteratively using the formal
inverse theory developed in [53]. Most of our effort to date has been expended
in getting linearly close, since our first guess to the L field turned out to be
grossly in error, particularly for the Laurentide ice sheet. This led to large
misfits between the observed and predicted RSL curves in this region [57]
because the Laurentide ice sheet had been taken to be much too thick. The
analysis leading to this conclusion is discussed in [59].

The solution to (10) for a realistic deglaciation history consists of a se-
quence of maps showing the rise (fall) of sea level relative to the surface of
the solid Earth as a function of time since melting commenced. An example
of such a solution is shown in fig. 19, where relative sea level is contoured in
metres for four times (given in thousands of years BP). From the complete
sequence of such maps we may extract a relative-sea-level curve for any site
for which we have RSL data available. A sequence of comparisons between
observation and theory is shown in the next subsection.

3'4. Comparisons between observation and theory. — On the basis of the global
solutions to (10), an example of which we have just seen in fig. 19, we may
divide the surface of the oceans into a number of distinet zones in each of which
the relative-sea-level histories are characteristic. These regions have been
diseussed in detail in [57, 58] and we shall not reproduce this discussion here



384 W. R. PELTIER

Fig. 19. — Four time slices through a solution of the equation for the gravitationally
self-consistent variation of relative sea level. The contours are marked in metres of RSL.
Times are a) 13000y BP, b) 8000y BP, ¢) 5000y BP, d) present.

except to say that the predictions fit the global data set remarkably well in
all regions, particularly after refinement of the deglaciation history as discussed
in [59]. Using the new deglaciation history and an Earth model which has a
lithosphere which is 112.5 km thick and a mantle in which the viscosity is a
constant 102* poise between the base of the lithosphere and the core-mantle
boundary, we shall proceed to illustrate the extent of the agreement between
prediction and observation.

The first such comparison has already been illustrated in fig. 13 for the
Richmond Gulf which is located in Hudson Bay near the centre of the Lauren-
tide rebound. This is one of the best controlled relaxation curves yet obtained
in the central region and it is clear that the uniform-viscosity model fits it
very well. In fig. 20 we show six further comparisons for more sites in the central
region and for a series of locations extending along the east coast of North
America from the North (Newfoundland) where the response is pure uplift,
through the transition region governed by the migration of the forebulge (Bay
of Fundy), southward to Carolina in the region of peripheral bulge collapse and
then offshore to Bermuda. At each of these locations the uniform-viscosity
model fits the relaxation data beautifully providing strong ecircumstantial
evidence that it is correct.
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Fig. 20. — Comparison of observed and theoretically predicted RSL variations at a
series of sites in North America. The locations are a) Ipik Bay, b) Churchill, ¢) North
West Newfoundland, d) Bay of Fundy, Nova Scotia, e) Southport North Carolina,
f) Bermuda. The solid lines are the predicted relaxation curves and the vertical bars
are the data. The length of each vertical line represents an estimate of experimental
error. Predictions are for the model with uniform mantle viscosity.

Such evidence is, however, only circumstantial and, in order to establish
the uniform-viscosity model as the correct model of mantle viscosity, we must
establish that other perhaps radically different models are not equally able to
fit the observational constraints. The main such alternative in which we are

25 - Rendiconti S.I.F, - LXXVIII
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interested here is a model which is everywhere identical to that discussed
above except in the lower mantle, where the viscosity is considerably higher
than 1022 poise. In[59] it is shown that at least one version of this model is
not strongly rejected by the relative-sea-level data and this has a jump in »
from 102 P to 10** P at a depth of 10® km. Previous indications to the con-
trary [58] appear to have been due to inadequacies of both the melting history
and the RSL model.

Our reasons for believing that models with some increase of viscosity with
depth may be relevant are basically two in number; that is besides the new
evidence that such models are not strongly rejected by the RSL data. In the
first instance, since mantle viscosity is a consequence of a creep process which
is thermally activated and since the activation energy is expected to increase
through a phase change[60] such as the olivine-»spinel or the spinel—-post
spinel phase change, we have a physical reason to expeet such an inerease.
Even if there were no phase changes, some inerease of viscosity might be ex-
pected on the basis of Weertman’s [61] phenomenological creep law which gives
the viscosity » in the form » = », exp [g*T /7], where g* is a constant, 7 (r)
is the melting temperature and 7'(r) the geotherm. If the spherically averaged
geotherm T'(r) is adiabatie, as would be expected if the mantle were convecting,
then, since T (r) is steeper than adiabatic, » should increase with depth.
Whether this empirical relation is in fact valid, however, remains a question.
The second reason for preferring some increase of mantle viscosity with depth
concerns the inability of the uniform-viscosity model to fit a further obser-
vational datum; that is the free-air gravity anomaly over the central depres-
sion. Although this datum has been previously ignored in discussions of
isostasy [58, 62], evidence is accumulating that it should not be. We previously
drew attention to the negative anomalies over Hudson Bay and Fennoscandia
in the free-air anomaly map of fig. 10. In the past there has been a great deal
of controversy as to whether these anomalies should be entirely attributed to
deglaciation-induced deviations from isostatic equilibrium or whether they
were related to some other cause. Two pieces of evidence suggest an origin
in glacial isostasy: 1) the zero-anomaly contours are almost exactly coincident
with the original boundaries of both ice sheets which would be expected if
the origin were glacial, and 2) within this boundary of the Laurentide depres-
sion, even smaller-scale local minima appear now to be correlated with original
local maxima of ice sheet thickness. This suggests that we should try simul-
taneously to fit both the relative-sea-level and the gravity data.

Given a solution S to (10) we may combine it with L to produce a com-
pletely self-consistent surface mass land distribution as a funetion of space
and time on the surface of the Earth. This may be convolved with the Green
funetion for the gravity anomaly in (95) to produce maps of the free-air gravity
anomaly as a function of time. In fig. 21 we compare the predicted present-
day free-air anomaly map, obtained using the same Earth model and load



MANTLE CONVECTION AND VISCOSITY 387

S

o

Fig. 21. — Comparison of the observed free-air gravity anomaly map (a)) for the
Laurentide region with the prediction using the model with uniform mantle viscosity (b)).
Contours are in milligal. Station density in 1°x 2° squares: [ > 50, E= 1050,

&S 110, 3 0.

history as led to the sea level data shown in fig. 20, with the [ree-air anomaly
map from[63]. The observed maximum negative free-air anomaly is about
35 mGal, while the predietion with the uniform-viseosity model is about
(8+10) mGal. Note that the zero-anomaly contours in the two maps are al-
most exactly coincident. The general pattern of the observed anomaly is,
therefore, exactly what one expects if it is due to deglaciation, the transition
from the interior negative anomaly to the exterior positive anomaly is almost
exactly coincident with the edge of the ice sheet and this is strongly constrained
by end moraine data.
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On the basis of the free-air data it is clear that the model with uniform mantle
viscosity which fits the relative-sea-level data so accurately is not able si-
multaneously to reconcile the observed gravity anomaly. As pointed out in [59],
however, it should be possible to reconcile both data sets with a model in which
the viscosity increases from the upper to the lower mantle sufficiently to pre-
vent the too rapid relaxation of the free-air anomaly, but not so much that
the fit to the relative-sea-level data is destroyed. We require a complete
analysis of the trade-offs involved in this process of model fitting and this is a
topic of current research using the formal inverse theory developed in [53].
Once such a model has been constructed, we will be able to employ it to remove
the glacial signal from the global free-air map and, after this filtering has been
accomplished, it could well be that the signature of mantle convection in the
global gravity field will become much more apparent.

3'5. Implications of the viscosity profile for the convection hypothesis. — In
the first instance the above analysis provides direct confirmation of the fact
that on time scales in excess of a few hundred years the mantle of the Earth
does indeed behave like a viscous fluid, at least at depths in excess of about
100 km. Below this lithosphere, in which the viscosity may be so high that the
concept loses meaning, » is on the order of 1022 poise. This number is extremely
important, as we shall see. If the observed free-air gravity anomaly is due to
glacial isostatic disequilibrium, then the viscosity of the mantle must increase
through the transition zone by perhaps 1--2 orders of magnitude. Such an
increase would be completely insufficient to prevent whole-mantle convec-
tion [64], but it would probably be sufficient to explain why the deep earth
quake focal mechanisms are compressive [31]. We will see in the following
discussion of convection that the thickness of the lithosphere and the mag-
nitude of the viscosity beneath it place important constraints on the convection
hypothesis of drift and spreading.

4. — Convection in the laboratory and Oberbeck-Boussinesq theory: a preliminary
model of mantle convection.

Before attempting to discuss the problem of convection in the BEarth it is
probably wise to begin with a discussion of convection under the circumstances
in which it is best known—that is in the controlled conditions of the laboratory.
In addition we shall concentrate in this section entirely on the problem of con-
veetion in a fluid with constant physical properties. There is a vast literature
on this fopic and we will certainly not be able to review it here but rather
direct the interested reader to the recent discussion by BUSSE [65]. The treat-
ment presented here will be made somewhat novel by its attempt to describe
the heated below and heated internally problems in parallel. In this way we



MANTLE CONVECTION AXD VISCOSITY 389

wish to direct immediate attention to the importance of the question as to
how the convection is driven. The relevance of the internally heated problem
to convection in the Earth's mantle should be clear. It is now conventionally
assumed that this convection may be driven primarily by the decay of the
long-lived radioactive isotopes and these clearly act as a volume heat source.

4'1. The basic equations and nondimensional parameters—Iinear theory. —
Consider a plane layer or spherical shell of fluid of thickness ¢ subject to con-
stant gravitational acceleration g directed everywhere normal to the layer
or shell. The fluid has constant coefficient of thermal expansion & We begin
by nondimensionalizing the hydrodynamic equations in the manner first intro-
duced in [64], choosing the scales for the field variables listed in table I which
are themselves functions of the natural temperature scale 4 which depends
upon the heating configuration. The variables 7', o, u,, #,, p, t ave, respectively,

Taere 1. — Sealing: liquids.

T=4T P = opqdp’

0 = 0y0 b= ((¢o;00);g2dA )V

u; = (gad® A [(ug/00)) 1wy heated below: 4d=1~T,
x; = d; heated internally: A4 = d2(Q,/K,)

temperature, density, velocity components, length, pressure, time, Zero sub-
seripts imply evaluation at some reference level. In the definitions of 4 in
table I, T, and T are, respectively, the constant temperatures on the lower and
upper surfaces in the heated below problem and @ is the rate of internal heat
addition per unit volume for the internally heated problem. Substituting these
scales into the hydrodynamic equations and completing the system with a
simple linear equation of state, we obtain the following nondimensional
svstem [64]:

Radwu, 1 . . . 1
(11) Qﬁ’ﬁi‘— 5(_’ffPT_Jf'ss)TC;'[~ (5’5, 31155:)]-
(12) ¢:0 + cilou;) =0,
df Pzdp 1 oo oy, 27 a:P
(13) B G -af—_—i—}Ra_(c_J.c,-I‘ LTy - : (e.-;en 3_1 ),
(14) 0 =1 —é(T_TD) —*F(P“Pu)t

where e;;= (¢;u,+ ¢, u;) 2 is the strain rate tensor, 1 = ¢,u; is the divergence
of the velocity field, and % = (0, 0, 1) is a unit vector in the z-direction. The
nondimensional parameters Ra, Pr, 7, §, I are defined in table II for both
the heated below and heated internally problems. In (11)-(14) the functions
f, k and h represent variations of molecular viscosity, thermal conductivity
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and volume content of heat sources relative to a fixed reference level, i.e.
Q = Q,h, ete.

TasLe II. — Nondimensional parameters: liquids.

Heated below Heated internally

Ra (Rayleigh number) gad® AT (Ko 00 Oy) (o] 00) goed®(Qo/ 00 Cy) (K o/ 00 Cy)* (o] 00)
Pr (Prandtl number) (0] 00) /(Ko 00 C,) same
8= ut a AT ad*(Qo/ 1 o)
T gad/C, same
00 29d same

The nondimensionalization of the hydrodynamic equations employed here,
which was first introduced in the context of the mantle convection problem
in[64], is not that which is usually used in the discussion of thermal econvec-
tion. Normally, e.g. [65], one employs seales for length, time and temper-
ature which are, respectively, d, d*/x and (T,— T,)/Ra. This conventional scaling
leads to a ratio of the inertial force to the viscous force in the nondimensional
system which is Pr—* rather than RaPr-! as we have obtained. Furthermore,
the ratio of the nonlinear thermal-convection term to the thermal-diffusion
term is Ra in our scaling rather than unity as obtains with the conventional
one. The scaling employed here is natural for convection at high Rayleigh
number when the cireculation is vigorous, sinee it is physically motivated by
balancing the viscous force against the buoyancy force and this balance of
forces is precisely that which obtains in the thin vertical plumes which dom-
inate the heat transport at large Ra. The fact that the inertial force goes like
RaPr-! rather than Pr-? in this scaling may be important with regard to the
construction of laboratory models of the mantle circulation which attempt
to ensure dynamic similarity. It is not sufficient, for this purpose, simply
to use a fluid with Pr> 1; one must ensure RaPr-'« 1 in order to eliminate
the influence of the inertial force from the laboratory experiments and thus
to ensure dynamic similarity with the mantle. The new scaling is also natural
for convection in thick systems for which v = O(1), since for such systems
at high Rayleigh number the two terms in the energy equation which scale
like 7 are indeed of the same order of magnitude and balance in a global sense.
This will be discussed in detail in sect. 5.

The Rayleigh number Ra is the principal nondimensional group in the
thermal-conveetion problem. It measures the balance between the dissipation
of kinetic energy by viscosity and the release of potential energy by the
buoyancy force. The Prandtl number Pr is the ratio of the kinematic viscosity
to the thermal diffusivity and for a steady flow is important only in the non-
linear regime, where it governs the relative thicknesses of the viseous and thermal
boundary layers. The remaining nondimensional parameters 7z, I, § measure
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the degree of non-Boussinesq behaviour of the fluid. 6 and I" together control
the run of density through the layer in the static-equilibrium state, while from
(13) 7 governs the importance of both compression work (the second term on
the left of (13)) and the viscous dissipation (the last term on the right). The
dissipation number 7 was introduced by PELTIER [64] and, although it will
be considered in detail in sect. 5, it is perhaps instructive to point out its physical
meaning immediately. Consider an adiabatic process which according to the
second law must satisfy

(15) dS=%dT—%ﬂpEm

where § is the entropy. It, therefore, follows that

dT  «T dp
16 P M s
(16) dr  pe, dr’

but the radial stratification is hydrostatic if there is no motion, thus dp/dr =
= — pg and, therefore,

AT  —ogT

dr ¢,

(17)

=T =T, exp [(ro—7)/(¢p/ag)] .

The adiabatic scale height is thus H,,, = ¢ /ag and this is the depth over which
the temperature changes by a factor of e if it varies adiabatically. The ratio
of the depth d of the convecting region to this scale height is just

(18) it o 00

¥
E Tad cn

the dissipation number introduced in [64].

The Oberbeck-Boussinesq equations are obtained from (11)-(14) by taking
the limit d<< H,, or 7<<1 and < 1. From this follows the fact that density
variations may be neglected everywhere except in the buoyancy term of the
momentum balance equation (11). Furthermore, the transport properties are
assumed to be independent of both pressure and temperature. These approx-
imations reduce the set of equations (11)-(14) to the new system

Radu, 1
(19) o 3 =5 (%P + k) + Veui,
(20) du,=0,
U
(21) =g VT +h,
(22) o =1—90T—1T,),

which applies remarkably well to laboratory scale flows.
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The first step in analyzing the conveection equations (19)-(22) is to employ
them in a linear stability analysis of the state-of-rest conduction solutions.
This analysis proceeds by expanding each of the hydrodynamic fields » in the
form w = w,+ ’. When these expansions are substituted into (19)-(22)
and the resulting equations linearized in deviations from the time-independent
conduction solutions p,, we may seek normal-mode solutions of the form

(23) y = [Z a, exp [ik, T + o, t]] g(z, Uk,1) .

So long as the fluid has no «horizontal » mean flow in the conduction state,
then it can usually be established that ¢, = 0 will mark the boundary between
unstable (growing) and stable (decaying) solutions. In terms of the vertical
component of the perturbation velocity w the stability of the layer is governed
by the solution of the following o.d.e.

£ dﬂ 2 ? — 2 & dT¢
(Zl} (dgz—-kﬂ) w ———I(H I{-d:‘{—l-‘f-ﬂ?,

where kf = k% -+ k2 and T () is the nondimensional conduection temperature
profile. Equation (24) constitutes a two-point boundary-value problem on
the interval 0<(<1, the eigenvalues of which are Ra and %k,. An example
of the stability boundary Ra(k,) from [66] is shown in fig. 22 for the heated
below problem when the horizontal boundaries are rigid as they would be in
a laboratory experiment. The main idea is that for Ra > Ra, the conduection
solution is unstable and that the circulation which replaces the state-of-rest
solution will be periodic and characterized by a horizontal scale with wave
number kg . These critical parameters, which are the co-ordinates of the
minimum on the stability boundary, are functions of the boundary conditions
and the heating configuration, as is well known.

Linear theory leaves many questions unanswered. It is doubly degenerate
in the sense that it is neither able to predict what the amplitude of convection
will be for a given Ra > Ra,, nor is it able to provide any information on the
geometry of the planform to be expected—only that the width of a cell should
be on the same order as its depth (i.e. aspect ratio ~1). These are questions
which only nonlinear theory can resolve. However, before we discuss this
theory we shall describe in the next subsection a few of the laboratory results
which nonlinear theory must be able to explain.

4°2. Laboratory observations of high-Prandtl-number convection: heated below
and internally. — In the general convection problem posed by (19)-(21), non-
linear flows are functions of both Ra and Pr. This parametric complexity is
eliminated when one focuses on the problem of convection in a planetary mantle
because of the magnitude of the Prandtl number. Indeed, since the kinematic
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Fig. 22. — Linear stability boundary Ra (kg) for the heated below conveetion problem
with two rigid boundaries. Eigenfunctions for the vertical velocity w and the tempera-
ture fluctuation 0 are inset for the first two modes.

viscosity is ~ 3102 em? s~ (from postglacial rebound) and the thermal dif-
fusivity is ~ 10-% em? s~ (from laboratory measurement), it follows that Pr =
= 0(102%). From eq. (19) it therefore follows that for any sensible Rayleigh
number the inertial forece will be completely negligible compared with the
viseous force. Sinece this is the only term in the equations where the Prandtl
number enters, it then ceases to be an important parameter in the problem.
In discussing the laboratory observations we shall, therefore, focus on the
properties of convection at infinite Prandtl number, since only such flows
could conceivably be dynamically similar to those in the Earth.

421. The heated below (Bénard) problem. The linear stability
boundary for heated below convection shown in fig. 22 suggests that a rather
broad band of horizontal wavelengths may be realizable above the critical
Rayleigh number. This expectation based on linear theory is not born out by



394 W. R. PELTIER

laboratory experiment. If one attempts to induce a two-dimensional form of
convection (rolls) with wavelength much in exeess of the eritical wavelength
at onset (Ra not too much in execess of Ra,) the induced flow goes unstable via
the so-called zig-zag instability [67], which transforms the induced flow into
a stable two-dimensional flow with wavelength again on the order of the eritical
value 4. Similarly, if one attempts to induce two-dimensional convection with
A< L, it is modified by the eross roll instability to a new set of rolls with in-
creased wavelength which is again such that A~ 2_[67]. These two instabilities
are illustrated in fig. 23a), b) from [65]. For Rayleigh numbers Ra > 2.26-10*
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Fig. 23. — The two figures on the left illustrate the development of a zig-zag
instability which transforms the roll planform into one with smaller wavelength,
while the two figures on the right illustrate the cross roll instability which transforms
the roll planform into one with larger wavelength (from ref. [65]).

two-dimensional convection rolls of any wavelength are not physically realized,
but rather are replaced by a three-dimensional flow which BuUssE and WHITE-
HEAD [67] have called bimodal. The planform of the bimodal flow is il-
lustrated in fig. 24. Under certain conditions this steady bimodal flow may
itself become unstable to a time-dependent flow in which the planform con-
sists of a spoke pattern [68]. An example of the transition from bimodal flow
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to spokes is shown in fig. 25 [69] for Ra = 3.72-105, As we shall discuss further
in the next section, these higher-order transitions in convection (e.g. rolls —
— bimodal) which oceur as the Rayleigh number is increased are due to sec-
ondary instabilities in the thermal boundary layers which form adjacent to
the horizontal plates. Their occurrence or nonoccurrence is strongly dependent
upon the mechanical boundary conditions (e.g. stress free or rigid), a point to
which we shall also return.

Complementing the above-described observations of planform are quan-
titative measurements of the dependence of the convective heat flow upon
the Rayleigh number. These measurements are usually expressed in terms of
the Nusselt number which is a nondimensional measure of the total heat
transport. For heated below, steady-state conveetion it is defined as

) ; g
pits Nu=1++-17—
(25) =1 AT

where KAT/d is the heat flux which would be produced in the absence of con-
vection and g is the convective heat flux. The heat transfer curve Nu(Ra)
shows distinet changes of slope at the critical point and for the value of Ra
at which the transition from rolls to bimodal flow occurs. At high Rayleigh
number, boundary layer theory may provide an explanation of the observed
Nu(Ra) relation. This will be discussed in subsect. 4’4 and will be used as
the basis of a thermal-history model in sect. 6.

422, Convection with internal heating. This heating configura-
tion has been less carefully studied than has the heated below case, the main
reason being that the experiments are very much more difficult to perform.
An example of an apparatus which has been used successfully for such meas-
urements at the University of Toronto is shown in fig. 26 [70]. The fluid is
heated by the Joule dissipation of an alternating current which is forced to
flow through the fluid between the electrodes which form its upper and lower
boundaries. The lower boundary actually consists of a wire mesh as the lower
electrade, below which is a relatively thick glass plate which serves to enforce
a no heat flux lower boundary condition by virtue of its low conductivity.
For these experiments the flow was visualized not by the shadowgraph tech-
nique used above for the Bénard flows, but by streak photography. In this
method the fluid is doped with neutrally buoyant particles (polystyrene beads)
and the flow visualized through the light which they scatter during a time
exposure of the film. In fig. 27a), b) we show, respectively, a sample planform
and a vertical eross-section for a flow at moderately supercritical Rayleigh
number. The planform is much less regular than those employed to illustrate
the Bénard case, a consequence of the fact that no regular form was indueced
initially. Tt does, however, show a rather remarkable degree of two-dimen-
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Fig. 26. — Schematic diagram of an apparatus for the study of conveetion with internal
heat generation (from ref. [70]).

sionality nevertheless. The vertical ecross-section in fig. 27b) illustrates the
most striking feature of convective flows generated by internal heating. Notice
that the stagnation point in the core of each cell is shifted dramatically away
from the cell eentre both horizontally and towards the upper corner. The
cireulation in these cells is such that the deseending stream is in the narrowest
region between two adjacent stagnation points. This asymmetry is due to the
fact that there is only one thermal boundary layer in an internally heated layer
and this is located adjacent to the cold upper surface which is held at con-
stant temperature. We will return to this point below.

The nondimensional heat fransfer curve for the internally heated con-
figuration has also been measured in a preliminary fashion. This is shown in
fig. 28, where we plot the Nusselt number for these flows as a funetion of the
Rayleigh number. In the internally heated case the Nusselt number is de-
fined as

AT, 4

(26) Nu -—AT:N,

which is just the ratio of the temperature drop across the layer which would
obtain in the absence of convection to that which obtains in the presence of
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Fig. 27. — The upper streak photograph is a planform of conveetion with internal
heat generation for Ra >~ 7.9-10%. Note the strong tendeney towards two-dimensional
flow in much of the domain. The lower streak photograph is & vertical eross-seetion

which illustrates very well the asymmetrie streamline pattern in the cell core at higher
Rayleigh number Ra ~ 5-105. Note that the stagnation point is shifted substantially
away from the cell centre (from ref. [70]).
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convection. Superimposed upon the experimental data, which are shown as
heavy circles, are the results from a sequence of theoretical calculations (crosses)
which will be discussed below. Theory and experiment clearly agree very

] I 1 i 1 L1 11l 1 1 1 Ll 111
10* 10° 10°
Ra

Fig. 28. — Nusselt number vs. Rayleigh number curve for the internally heated experi-
ments. The solid eircles are experimental points, while the erosses are results of numerical
calculation for two-dimensional steady-state flows.

well insofar as the heat transfer characteristics of the circulation are conecerned.
The scatter in Nu(Ra) at large Ra is a consequence of noise in the measuring
system. This has been corrected in a new apparatus [71].

4'3. Nonlinear solutions of the Oberbeck-Boussinesq equations. — If we can
obtain exact solutions to the nonlinear system of equations (19)-(22), we should
be able to correctly predict the experimental results described above. These
observations suggest that we should first seek two-dimensional steady-state
solutions to the equations, at least for moderately supercritical Rayleigh
numbers, since such solutions are the ones which are realized physically. Al-
though such solutions may be constructed using finite-difference methods
(e.g.[10]), probably the most elegant way to proceed is via the Galerkin for-
malism which has been employed so successfully by Busse and his co-work-
ers[72, 73]. We will illustrate the method here by using it to solve the in-
ternally heated problem, which has apparently not been done previously.

We begin by expanding the temperature field in the form T = T, + 0,
where 7' is the conduction solution and ¢ the deviation from it. When this
is substituted into (19)-(21), and the conduction solutions subtracted, we obtain
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the following p.d.e.’s in:u, 0, m, where z is the scaled pressure:

(27) Veou=0,

. Ra du

{28) ﬁaz—Vn—f—O}t-f—Vzu,
; de 1

(29) G5V + Awe+ ).

The horizontal boundaries are on = + 1. By expressing the solenoidal velocity
field u in terms of poloidal and toroidal scalars as

(30) u=0dp+ ey,

the continuity equation}(w) is satisfied exactly. The operators d and & are
defined such that

(31a) 0p =V X (VXAp),

(31b) ey =V xAdy.

By operating on (28) with 4-V X and 4:-VX(V X, eqgs. (28) and (29) are equi-
valent to the following equations in the secalars ¢, v, 0 (following [74]):

Ra 0
(32) Vid,p— 4,0 = ﬁ{d-(dtp + &y)-V(dp + ey) + EEVM”’} ,

R 0
(33) V2d,y =§§{8'(6rp+€w)-v(6¢ + &y) ‘I‘E‘TtAz'P}:

1 LY
EVZB——(z -+ %‘)Ag(p = (dq} —I—s'lp)'VB "i—"gi-

(34)
In (32)-(34) A, = 0*/dx* 4 ©2/dy? and we assume rigid boundaries in order to
accord with the laboratory conditions. On the horizontal boundaries at
2= -+ } the boundary conditions are p=0,p =9 =0 on 2=+ 1 and 0 = 0
on z=1% and 9,0 =0 on 2= — }, since the top surface is held at constant
temperature, while the bottom surface has no heat flux through it.

Two-dimensional solutions to (32)-(34) have p =0 and are independent
of », say. Steady two-dimensional solutions satisfy the coupled equations
(slightly modified from [74] for the present problem)

R & 4 5§
(35) aw(vitp =i B) = "P_:_b {af«ztpa;m@ o=t 35»¢3;zz:¢ + aﬂzﬂpa;quﬂ = O;v‘}w:ws?}} '
(36) %L V20 — (2 + 1) 05 = 05,00, — 04, 0,0 .

26 - Rendiconti S.I.F. - LXXVIII



402 W. R. PELTIER

To obtain a Galerkin solution to (35) and (36) we expand the scalars 6 and ¢
in terms of orthogonal funections as (e.g. [73])

(37a) 0 = > by exp[idoy] fu(z) = 2 by O,

AI’

(37b) ¢ = 2 2y exp [idoy] gu(2) = 3 @z pv
Ay A

where the f,(z) and g,(2) each satisfy the boundary conditions on 6 and e,

respectively, and constitute a complete set of functions on — l<z<1. For

the internally heated problem they are

(38) fr(2) =sin (v — LHn(z—1) ,

sinh (f2) sin {ﬁ;,.z)

sinh (31)  sin (46w) "

cosh (A4p42) €08 (A4e40)2)
cosh (3 4440) €08 (3 A3e4m)’

v even,
(39) 9,(2) =

» odd.

The gi(z) are the so-called Chandrasekhar functions which are defined in [74],
where the constants f,, 4, are listed.

To solve (35)-(36) using the Galerkin formalism, we simply substitute the
expansions (37) and then multiply (35) and (36), respectively, by 0,, and P
and integrate over the layer. This leads to the following set of simultaneous
algebraic equations in the @, b

(40a) :L:Pvﬁ?.v St 1’(3“5“ r— Pr Sjilgnaﬂ.vann =0,
1
('iOb) ‘ﬁ I,[;i;vb}, + Ix,ulv Aiv + I::L)J.vgna'ﬁ.vbgn =0 )

where the I are interaction matrices the elements of which are all constants
obtained from the layer integrals. To solve the set of algebraic equations (40)
we use a triangular truncation such that |x| 4 g <N and a standard subroutine
for the solution of simultaneous algebraic equations.

Examples of solutions which we have obtained (SHARPE and PELTIER, in
preparation) using these methods, for both the heated below and the heated
internally problems, are shown in fig. 29, where the Rayleigh number in each
case is ~10Ra, and Pr = co. Each solution is represented by contour maps
for the stream function and the isotherms, and also by a graph of the mean
temperature field as a funetion of height through the layer. These solutions
illustrate the fundamental differences between the heated below and internally
problems quite clearly. In the former case two boundary layers form, one
adjacent to each horizontal surface, while in the latter case only a single thermal
boundary layer exists adjacent to the top constant-temperature boundary.
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b-3

Fig. 29. — Results of the Galerkin ecaleulation for both heated below and heated
internally flows at Ra ~ 10 Ra,. Sequence a is for the heated below case and b for
heated internally. In each sequence plate 1 is the streamline pattern, 2 the pattern
of isotherms and 3 the horizontally averaged temperature field as a function of height.
Comparing -3 and b-3 it is clear that no thermal boundary layer forms adjacent to
the lower adiabatic boundary in the internally heated case.

Also evident in the heated internally solution is the shift of the stagnation point
in the streamfield away from the centre of the cell which we saw in the experi-
mental cross-section of fig. 276). We can obtain a quantitative comparison of
these solutions for the internally heated flow with the laboratory observations
by ecalculating the Nusselt number Nu as a function of the Rayleigh number.
In terms of the Galerkin coeflicients the Nusselt number (26) is given by

1

v

The comparison is shown in fig. 28 and it is clear that, for sufficiently small Ra
at least, the two-dimensional steady-state solutions accurately predict the
observed heat transfer.

The success of the Oberbeck-Boussinesq theory in reconciling laboratory
observations has now been extended far beyond the mere reproduction of
observed heat transfer data. At least insofar as the heated below problem is
concerned, all of the basic symmetry transitions involving the stability of two-
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dimensional solutions have been carefully enumerated. A recent and com-
prehensive review of these results has been given by BussEe [65]. The secondary
instabilities which mark these higher-order transitions involve the thermal
stability of the thermal boundary layers which form on the horizontal surfaces
as the Rayleigh number is increased. For sufficiently high Rayleigh number
we may invoke boundary layer theory to deduce the heat transport charac-
teristics of convection. This theory is in fact very useful in understanding
mantle convection and we review it in the next subsection.

4°4. Boundary layer theory for convection at high Rayleigh and Prandtl number:
a simple model of convection in the planetary mantle. — As Ra increases, the thermal
boundary layers illustrated in fig. 29 continue to become thinner and for very
high Ra it becomes prohibitively expensive computationally to construct
complete numerical solutions. However, in this regime the high-Prandtl-
number flows are amenable to boundary layer analysis from which the most
important characteristics of the cireulation may be determined. This analysis
was first applied in the context of mantle convection by TurcorTE and Ox-
BURGH [75]. It has recently been exploited to some advantage in the con-
struction of thermal-history models by SHARPE and PELTIER [47], who also
demonstrated its consistency with the main observational data when whole-
mantle convection was assumed. Here we shall briefly review the theory and
compare its predictions to the geophysical observations discussed in seet. 2.
Following [47] we will focus on the idea of whole-mantle convection as opposed
to the Turcotte-Oxburgh view which has usually been restricted to the upper-
mantle form.

In the thin thermal boundary layers of thickness d there is a steady-state
balance between the horizontal advection of heat and its vertical diffusion
i.e., if AT is the temperature drop over the length scale ¢ and if % is the hori-
zontal veloeity and z the diffusivity, then

AT AT
(42a) “7"“%—5; ’

where d is the layer depth and the horizontal boundaries are assumed stress
free. In the vertical plumes, on the other hand, the buoyant generation of
vorticity  is balanced by viscous diffusion (from the eurl of (28) in the limit
Pr —> co). In dimensional form we, therefore, have

a AT Yo

K ~vV*w~F .

(42b) g

But, since u~ w~ wd away from the plumes and boundary layers in the cell
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interior, it, therefore, follows by eliminating w from (42a), (42b) that

(43a) 8 = a,(A)d(Ra, /Ra)¥,
(43b) u = a,(4) Ra¥x/d,

(43¢) w = a,(4) Ra’x/d,

(43a) q = ay(A)(Ra/Ra ) »AT/d.

The constants a,(4) are funetions of the aspect ratio of convection A and may
be determined by a detailed matching of the boundary layer solutions for the
plumes and horizontal thermal boundary layers to the isothermal Stokes flow
which obtains in the core of the cell. This may be a relatively simple exer-
cise [T5] or a complex one [76] depending upon the degree of rigour imposed
in the matching process. The analysis in [75] in fact turns out to be quite ac-
curate, althongh it has been improved in [77] and for an aspect ratio slightly
larger than that at the onset of instability yields a,(A4,)~ 0.50, a.(4;)~
=~ 0.143, a,(Ay) ~ 0.251 and a,(4,) ~1. The result (43d) is one which may
be written in the form Nu = (Ra/Ra_)* and compared to laboratory experiment
and numerical computation. Although the fit to the finite-difference com-
putations of Moore and Weiss [78] is very good, the comparison with laboratory
data i3 not. The diserepancy between the boundary layer theory and experi-
mental data is due to the fact that the experiments are of necessity performed
with no-slip boundary conditions.

The consistency of the boundary layer theory with the idea of whole-mantle
conveetion was first pointed out in [47] and the discussion is worth reiterating
here. All of the quantities (43a), (43b) and (43d) are geophysical observables.
% is Just a typieal plate speed, ¢ is the observed mean mantle contribution to
the surface heat flux [79], and § is the thickness of the thermal boundary layer
at the surface. It is an observable because of the strong temperature de-
pendence of viscosity due to the thermally activated nature of the ereep process.
The thermal boundary layer at the surface of the planet is, therefore, a region
through which there is an enormous variation of viscosity, beeause it is in just
this region that the temperature gradient is strong. The thermal boundary
layer of the mantle convective circulation and the lithosphere are, therefore,
spatially coincident. In seet. 3 we showed that the lithosphere was about
100 km thick and this is, therefore, also the boundary layer thickness. This
interpretation is radically different from most interpretations of mantle con-
vection in the literature, e.g. [11, 12, 14, 15]. It depends upon the assumption
that the lithosphere, once broken, rides passive and platelike on the uniform-
viscosity mantle beneath it and that, in spite of the large viscosity contrast
through it, it is still perfectly coupled to the mantle. This implies the absence
of any substantial velocity shear bencath the plates.
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Since each of the predictions (43) is in terms of only two unknowns, the
Rayleigh number Ra and the depth of convection d, we may choose any two
of the expressions for the three observables and eliminate one unknown in
terms of the other. The unique solution to (43a) and (43b) with § ~ 100 km
and u ~T7em/y is Ra~3.4-10° and d ~3-10°cm (Ra, = 10%), i.e. whole-
mantle convection! We may tentatively conclude from this analysis that the
boundary layer theory provides a remarkably accurate explanation of the main
observables of mantle conveetion.

Another way of looking at the expressions (43) is to eliminate AT between
any two of them to get an explicit expression for the depth of convection d
in terms of observed quantities. There are in fact two ways in which this can
be done. If we combine (43b) and (43d), we get

' T
(44a) d- ““(-(""‘ ) by

~ 4, \Radqay) *
while, if we combine (43a) and (43b), we get

" wO? [z
(425) - a,-a;-Ral’

Tfin (44a) we substitute v = 4 em-y—* as the average plate speed, Ra, = 102,
g=10%em-57% ¢ =0.5erg-em251[79], » = 1022g-em'-s' (poise), o« =
=3-10° K, (O, =1.2-107erg-g~1-K-1, then we obtain d~4.6-10% km.
BELSASSER et al. [80] attribute the result (44a) to Gorirsyx, but, as we have
shown above, it follows trivially from the usual boundary layer theory which
was first employed to demonstrate compatibility of observations with whole-
mantle convection in [47]. Although this prediction of the depth scale is quite
suggestive of whole-mantle convection, the predietion of the equally relevant
(44b) which has apparently not been derived previously is d ~ 3600 km, where
we have again used the moderate ¥ = 4 em-y—! and é = 100 km.

On the basis of the above arguments we may be tempted to conclude that
whole-mantle conveetion is not only compatible with the observations, but is
more or less demanded by them. This conclusion is dependent upon at least
four fundamental assumptions: i) that the two-dimensional steady-state
boundary layer scaling for plane-layer convection is not fundamentally altered
for three-dimensional convection in a spherical shell, ii) that the viscosity
of the mantle is a constant everywhere or that the system behaves as if it were
constant, iii) that the enormous viscosities which obtain in the lithosphere
are entirely « passive» in that they produce no egsential effect upon the cir-
culation (this eould conceivably be due to nonhydrodynamic effects such as
melting beneath the ridge) and that there is no substantial shear in the horizon-
tal velocity between the lithosphere and the asthenosphere (i.e. no decoupling),
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iv) the mantle convective circulation is driven entirely from below by the
efflux of heat from the core. It is unlikely that all of these assumptions are
correct (iv) is certainly not correct), but the internal consistency of the ob-
servations with convection scaling is nevertheless well demonstrated by the
boundary layer analysis. Perhaps the most interesting point to be made on
the basis of the above exercise is that, if the viscosity of the mantle were
orders of magnitude different from the value deduced from postglacial rebound,
the convection hypothesis could not be made compatible with the observations,
no matter what the choice for d!

Given the excellent fit of the boundary layer model to the observations
from a global perspective, it is tempting to enquire as to whether it is also
able to fit any detailed local data. This is in fact the case. In the boundary
layer approximation the steady-state form of the energy equation becomes

or axr

(45) “EE =xa=

where we have assumed ©2/0x?< 0%/d22%. Under the similarity transformation
7'= z/xt (45) is reduced to an o.d.e. in 5’ which may be nondimensionalized
by writing 5'= 5-2(x/u)} to give the equation

a7
dn?

ar

(46) | ZnE—O,

so that subject to boundary conditions 7' = T, ona =0 and 7 — 7T _as z —> co
the dimensional solution is

o m_m o ETRAY
(47) T=T+ (T, Ts)mf[g(mv)].

This is the boundary layer solution for the temperature field in the boundary
which cools horizontally as it moves away from the ridge crest. T, is the tem-
perature at the ridge erest # = 0 and 7 is the temperature of the mantle
material in the core of the convection cell beneath the thermal boundary layer.
The surface heat flux associated with the temperature distribution (47) is

orT , w \
4 =NK—| =KIT,—T)|— %
s) w-Kg —KC.—1)()
Sinee the age of the lithosphere is just «/u, (48) predicts that the heat flow
will decrease inversely as the square root of the age of the ocean floor and this
is the dependence noted in the observations discussed in sect. 2 and shown in
fig. 8. From the solution (47) for the temperature field we may also calculate

the topography of the sea floor under the assumption that it is isostatically
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compensated and that the density of the boundary layer material is a function
of temperature only. If one assumes compensation, the depth of the sea floor
beneath the ocean surface will be [81]

[

dz (T_ Tref)!

o

(49) D =Dy—-
1 —ewﬁeo

where D, is the reference depth at the ridge crest, say, and 7, — T, is the
temperature there. If we substitute (47) into (49), the result is

5 _p_ - 2oTa—T) (2\i[(2u)l (2}
0 v=n= T G (G -6

so that the depth of the sea floor should inerease linearly as the square root
of the age of the oceanic lithosphere and this was demonstrated to be the case
observationally, as seen in fig. 7. The boundary layer model which assumes
complete coupling between the lithosphere and the mantle is, therefore, in
very close accord with the observations. Much has been made [14, 36] of the
deviation from the square root of the age dependence which is observed
in the oldest oceanic lithosphere for the bathymetry field. It has been
argued that this might be explained by the existence beneath the old ocean
floor of a second scale of convection derivative of a secondary instability of
the upper boundary layer. Although this scale of motion might exist, it cannot
but represent a relatively innocuous perturbation of the large-scale flow as-
sociated with plate creation and destruction, since the temperature dependence
of viscosity forces the instability to reside in a region in which the available
potential energy is minimal. In terms of the whole-mantle convection model,
the observed flattening of the sea floor may be attributed to partial internal
heating of the flow due to distributed radioactivity in the mantle [82].

If whole-mantle convection is indeed oceurring in the Earth, as the bound-
ary layer theory may be taken to suggest, then there are several physical
effects which we have so far omitted which may become important because
of the depth of the system. We investigate these and other hydrodynamic
complexities in the next section.

5. — Convection in the Earth and its hydrodynamic complexities.

1f we are obliged to consider convection in a deep layer like the mantle,
then certain non-Boussinesq effects neglected in the preceding discussion may
become important, even if we continue to assume that the transport coef-
ficients are constant. These effects are associated with the dissipation number
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7 which appears in the energy equation (13), where it measures the importance
of both compression work and viscous dissipation. The possible influence of
these effects on mantle convection was demonstrated in[64]. This section
is concerned with these and other complexities which are not encompassed
within the Oberbeck-Boussinesq theory, including the influence of phase transi-
tions, of non-Newtonian rheology and of temperature-dependent viscosity.

5'1. Anelastic convection: the adiabatic gradient and viscous dissipation. —
An approximation which leads to considerable simplification of the complete
set of hydrodynamic equations (11)-(14) is the so-called anelastic approximation
which has been widely used in meteorological applications for many years.
Examples of its use in this context may be found in[83, 84]. This approxi-
mation is based upon the neglect of dp/et in the continuity equation (12), a
devise which filters compression waves completely from the equations of mo-
tion and, therefore, requires that the Mach number M of the flow be such
that M2« 1. This is eertainly a valid approximation for the mantle circulation!
If dp/ct = 0, then p = j(2) if the density field is initially in hydrostatic equi-
librium (i.e. a funetion of height only). A second approximation which is useful
in studies of deep-mantle convection pertains to the eompression work term in
the energy equation which contains the factor dp/di. A simple scale analysis
demonstrates that dp/dt ~ — gw, where w is the vertical component of velocity
and we have used the fact that dp/dz =~ — 5g. Subject to these two very good
approximations the field equations (11)-(14) are reduced to

i’ Ra _du; 1 B i I 1
(51) P g_dt ~3 (—a:p + 9}»;} +0; )f(cu 3 Aéu)] ,
(52) d;(ou;) =0,

dT 1 . 21f 1
5 g — 3.4kD. T YR Rouis i CHCWEE
('0'3) dt +TT?U_9_R3[(’J{ACJ’1)+IJ'1T j§ (fr.r(r} 3—1 )!
(54) 0o =gl —0T—T)+I'(p—pl,

where p = g(2) in the state in which 7' = 7" and p = P and for the deseription
of deep convection it is natural to take this state to be adiabatie, since, only
if the temperature gradient is superadiabatie, can convection occur. In the
adiabatic reference state the hydrostatic density field (nondimensional) is

(55) 0(2) = exp[(1 —0) 7/y],

where y = o/pe, I" is Griineisen’s parameter which has been assumed constant
in deriving (55) and where 7 = gad/C, is the dissipation number [64] which
we showed in subsect. 4’1 to be equal to the ratio of the layer depth and the
adiabatic temperature scale height H,.
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The first and, as we shall show, most important effect of 7 may be revealed
by linearizing (51)-(54) about a steady-state conduction solution. Expanding
the first-order fields in normal modes, as previously, and invoking the ex-
change-of-stabilities principle, the stability equation which replaces (24) is

7}

(56) Fow = —I3% Ra (df°

€ - r.Tc) 0.0

where #° is a complicated ordinary differential operator the explicit form for
which is given in[64]. If the density variations are neglected, i.e. g, — 1,
then #°¢ — (A%/dl® 4- ky)" as before. The effect of 7 is then seen to be in the
modulation of Ra by the factor d7 /df -+ v7, rather than the factor d7,/dZ
which obtains in the Boussinesq limit. Since 77, is the nondimensional adia-
batie gradient, it is clear from (56) that it is the difference between the actual
and adiabatic gradients which drives convection in a deep layer and not the
temperature gradient itself,

Mathematically the effect of 7 is to introduce « turning points» into the
stability equation [64] because the sign of d7/d{ 4 =7, may change from
<+ to — through the layer. Where the sign is |+ the temperature gradient is
superadiabatic and that fraction of the layer is potentially unstable, and where
— it is subadiabatic and stable. In liguidlike fluids such as planetary interiors,
the effect of the adiabatic gradient for constant « is to stabilize the deepest
layers relative to the near-surface region [64]. This is because the adiabatic
gradient inereases with temperature and the temperature increases with depth.
In gaslike fluids, such as stars, on the other hand, this relative stabilization
of the hot interior does not occur, a consequence of the fact that the thermal-
expansion coefficient o = 71, so that the adiabatic gradient is independent of
temperature.

If the dissipation number is sufficiently large that the lower part of the
layer is stabilized, then the style of convection which obtains at onset may
be « penetrative » [64] and the flow consists of a stack of cells in the vertieal,
only the topmost of which is driven by instability, while the rest are driven
viscously from above. Whether this is important in the Harth depends upon
the magnitude of 7 = gad/c,, which is an increasing function of the depth of
convection d. The largest effects are, therefore, expected for whole-mantle
convection, which, as we have shown using boundary layer arguments, may
be suggested by the data. Substituting ¢ = 10°em 2, ¢ = 3-10-°°C-1, d =
= 3:10° em, ¢, = 1.2-107 erg g~ °C~1 into 7 = gad/e,, we get 7~ 0.75 as an
upper limit, since o may be somewhat lower in the deep mantle. Another
independent method of deducing 7 is to make use of the seismically observed
dengity variation through the mantle in conjunction with eq. (55). This ap-
proach leads to a similar value of z~ 0.6, as pointed out by Jarvis and
McKuNzie [85]. Given this value of v for whole-mantle convection, it is not
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clear what the effects of T might be beyond moderating the intensity of con-
vection through the adiabatic gradient. It does not follow from (53), for ex-
ample, that for r = 0(1) viscous dissipation is of the same order of importance
as thermal advection. To disecover the full impact of finite 7, we must actually
solve the nonlinear problem. Before discussing such solutions there are several
interesting observations which can be made on the basis of the volume integral
of the energy equation (53).

For steady convection (&7'/¢t =0) this volume integral gives the simple
dimensional result

(57) @ — rf@Tw v,

where @ is the total viscous dissipation. This is simply a statement of the fact
that for steady conveetion the shear heating is entirely offset by the com-
pression work (work done against the adiabatic gradient). Under the assump-
tion that the convection is vigorous, this expression may be manipulated as
in [86] to give an expression for the ratio of @ to the total heat flux F' across
the top surface of the convecting region as

(58) %zr( ~¥)=E.

where g is the ratio of the internal heat generation to the total heat flux. The
ratio @/F = E may be interpreted as the efficiency of conversion of heat into
work within the convecting region following MALKUS [87]. As pointed out by
HeEwWITT ef al., (58) clearly implies that the importance of viscous dissipation
is completely independent of the Rayleigh number and this was already clear
from the scaling of Peltier [64]. In the Boussinesq limit v — 0 and viscous
dissipation can be neglected, but for 7 = O(1) both the effect of shear heating
and of the adiabatie gradient may become simultaneously important. To de-
termine how important and for what values of 7 we must solve the nonlinear
problem in (Ra, r) parameter space. The anelastic equations (51)-(54) have
been rederived in [85] and solved using finite-difference methods in two spatial
dimensions for moderate values of Ra and 7. We turn to a brief discussion of
these solutions here.

In fig. 30 we show a sequence of mean-temperature profiles for a large number
of heated below numerical caleulations which were integrated to steady or
statistically steady state for various values of Ra and 7 = d/H,[85]. For a
fixed value of 7, Ra increases with the mean temperature. As is clear by in-
spection, as 7 increases the definition of the lower boundary layer is erased,
particularly at low Rayleigh number. This is a consequence of the fact, stated
above, that the stabilizing effect of t is strongest near the bottom of the layer,
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where the temperature is highest. Near the bottom boundary, thermal con-
duction, therefore, plays a larger role. In addition, the mean temperature field
in the interior of the layer is no longer isothermal as was the case for the Bous-
sinesq flow shown in fig. 29. Tt is rather adiabatic as may be established by
employing the second law in the form

i) a5 _ 67 _adp.
dz T dz pdz

Since the pressure field is hydrostatie, then to a good approximation dp/dz =
= — 0g and we may integrate (59) to obtain

(60) S8(2) — S(d) = ag(z — d) + ¢, In (T/T,),

1ol o /H=100 10
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Fig. 30. — Mean-temperature profiles for a sequence of nwmerical simulations of
heated below convection in deep layers with finite d/H,=v. The 7 value is marked
beside each sequence and within each sequence the Rayleigh number inereases with
the mean temperature. Note the adiabatic cores which develop in the cell interiors
and the increased effect of the adiabatic gradient with increasing depth (from ref. [85]).
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where 7, is the absolute temperature on z = d, the top surface, and is an im-
portant additional independent variable in deep-layer caleulations, as was
pointed out in[64] and subsequently verified in [85]. If the temperature field
were adiabatic, then 7 would have the form (17) and S would be constant.
We can use (60) to transform the temperature profiles shown in fig. 30 into
profiles of § and the result is shown in fig. 31 for a sequence of experiments at

78
10
€ a/H, =050
05
;2 |86 B8 B
81
0 0z 04 06 038 7.0 T2 s
1d
z o /H, =100
05
7 03 lcs c8 ci2 c13
02 0 0z o0& 08 08 10 S

Fig. 31. — Entropy profiles for the heated below flows showing that the cell interiors
are indeed adiabatic (from ref. [85]).

various values of 7 and Ra [85]. Clearly the core region of the layer is adiabatic
and the entropy profiles for the deep layer look quite like the temperature
profiles for the Boussinesq flows. The most obvious effect of 7 is thus to make
the lapse rate adiabatic in the interior, an effect which is well known.
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Inspection of the mean profile Bl in fig. 31 shows the characteristic asym-
metry between the bottom and the top of the layer, which is produced by the fact
that the adiabatic gradient depends linearly upon temperature. For this model,
which has Ra~ 2.8-10%, the bottom of the layer is completely stabilized and
inspection of the two-dimensional contour representations of the field variables
in fig. 32 shows (sce the streamfield y) that the motion at the bottom is driven
viscously from above, as was demonstrated by the linear analysis in[64]. As
the Rayleigh number increases, Ra = 4.12:10% 1.65-10%, 6.59-10% 1.65-107
2.64-107 for B2, B6, B8, B10, B11, respectively, this stable region predicted
by linear theory is eliminated and a well-developed lower thermal boundary
layer is observed. With finite 7, however, the temperature drop across the
bottom boundary layer is always less than the temperature drop across the
top boundary layer. Also evident in fig. 32, where contours of constant viscous

T w ¥
7 s

[
g

\_,.-r"‘_""(‘\~¥

R

Fig. 32. — Different representations of an anelastic solution at 7=0.5 and Ra=2.8-105,
Note particularly the streamfield y which demonstrates the penetrative style of con-
vection discussed in the text and the dissipation field @ which maximizes in the regions
of large deformation which oceur at the terminations of the hot and cold vertical plumes
(from ref. [85]).
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dissipation are also shown, is the fact that the shear heating maximizes at the
stagnation points where the deformation is largest, as must be the case on
intuitive grounds.

In fig. 33 we show the very nice result from [85] illustrating the variation
of the «efficiency » of convection as a function of Rayleigh number for various
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Fig. 33. — The «efficiency » of convection as a function of Rayleigh number showing
that 7 is indeed an upper bound which is obtained only when the convection is very
vigorous.

values of 7. From (58) we have ¥ = 1 for the heated-from-below case and this
appears to be a rigorous upper bound upon the efficiency of convection which
is only achieved in the limit Ra — co. This is entirely expected, since (58)
was derived on the basis of the assumption of vigorous convection and this,
of course, occurs at high Rayleigh number.

The geophysically relevant result of the calculations in [85] is that, with
7 on the order of that appropriate for the Earth’s mantle, the only significant
effect is that of the adiabatic gradient. In a global sense, viscous dissipation
remains unimportant and, therefore, in the boundary layer theory we may
simply replace the temperature drop AT by the adiabatic excess AT — AT
and the same analysis holds for a thick layer. Thus neither of the expressions
derived for d in terms of observable quantities, (44a), (44b), are affected, since
both were obtained by eliminating AT. It has been suggested in [85] that the
effect of 7 actually leads to a reduction of the aspect ratio of convection which
is significant, and, therefore, that one cannot account for the spatial scale
of the surface plates simply by assuming whole-mantle convection as I have
advocated here. As was pointed out in [64], in order for a significant rescaling
of the solutions to occur, the magnitude of 7 must be sufficiently large to en-
force a penetrative style of convection and the aspect ratio is expected to
remain approximately constant until this decoupling of the lower levels oceurs.
This requires values of 7 significantly greater than those estimated for the mantle
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and, therefore, the natural explanation for the mean plate size (~ 4000 km)
remains the mantlewide convection model in which the circulation has an
aspect ratio of ~1.

5°2. Phase transition, non-Newlonian rheology and sphericity. — Other factors
which may impact upon the simple boundary layer scaling include the presence
of phase transitions, possible nonlinearity of the constitutive relation for the
mantle fluid and the influence of spherical geometry. The first of these in-
fluences which we will discuss here is that of the real divariant solid-solid phase
transitions which exist in the mantle. There are two such major discontinuities
at depths of 400 km and 670 km which are associated respeectively with the
transformation of the mineral olivine to the more closely packed spinel phase
and of spinel to an oxide configuration [88]. It should be pointed out here
that the interpretation of the 670 km seismic discontinuity as a phase change
is not universally accepted. It had been suggested by KnNororr [89] that
phase transitions might inhibit the penetration of convection through them,
Subsequent caleulation by BusseE and ScHUBERT [90], ScHUBERT and TUR-
CcoTTE [91] and PELTIER [64], which treated the phase transitions as univariant,
clarified the physical processes. These involve a competition between a sta-
bilizing influence (the latent-heat release) and a destabilizing influence (the
distortion of the phase boundary by thermal advection) when the phase transi-
tion is exothermic as in the case of olivine — spinel. These calculations showed
that this transition would in fact contribute constructively to the instability
and thus provide modest enhancement of the conveetion rather than any
inhibition. Finite-amplitude analysis by RIcHTER [92] supported the con-
clusions of the stability calculations.

SCHUBERT et al. [93] have considered the additional effects produced by
divariance in the case that the phase change is exothermic and show that
additional destabilization is liable to occur. We do not presently known whether
the spinel-oxide transition (if indeed it exists!) is endothermic or exothermic[94],
but, if it were endothermie, it could offer some resistance to penetration of the
slab (although in [93] it is shown that this could only be slight) and perhaps
contribute to the explanation of the compressive nature of the deep seismic
foeal mechanisms. A larger stabilizing influence of the seismic discontinuity
at 670 km depth could be produced if there were some increase in viscosity
associated with it, as has been suggested by McKENziE and WEIss[95]. They
have stated that an inerease of 2 eV in the creep activation energy across the
boundary would make the viscosity in the lower mantle so high, in fact, that
convection through the boundary would be completely prevented. Given the
inability of the constant-viscosity model to simultaneously reconcile both the
relative-sea-level and the gravity data, as pointed out in sect. 3, it seems clear
that some increase in lower-mantle viscosity will be necessary. As pointed
out in[60], however, based upon a systematic relation between oxygen ion
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packing and activation energy, it seems that only a very small increase of ac-
tivation energy is expected, implying a viscosity increase of not much more
than one order of magnitude. Such an increase will probably allow us to re-
concile both the free-air and sea-level data, but would be completely insuf-
ficient to inhibit whole-mantle convection. This notion has recently been
reinforced by SABADINI and PELTIER [96], who have inferred a lower-mantle
viscosity of about 5-102® poise by inverting polar-motion data for the nontidal
acceleration of rotation and for the polar wander evident in the TLS pole path.

An additional non-Boussinesq effect which we will briefly touch upon here
concerns the possibility of nonlinearity of the stress.strain relation, that is
the question as to whether non-Newtonian behaviour might be important.
Such behaviour is strongly suggested by laboratory data on the creep of olivine,
which show that, at high temperature and pressure and at laboratory strain
rates, the steady-state regime is controlled by the motion of dislocations by
glide and elimb. The experimental data are consistent with the power law

_ B o [ E 2N
(61) e—,—fexp[ BT --]t 4

where ¢ is the strain rate and ¢ the differential shear stress. The values for the
power law exponent » and the activation energy E* have been determined by
KoHLsSTEDT and GOETzE [97] and KOHLSTEDT ef al. [98] to be equal to n = 3,
and E* — 125 keal/mol. The pre-exponential dependence upon 7-* has not
been observed experimentally, but is inferred from theoretical considerations[99].
Ross et al. [100] have recently measured the activation volume and obtained
10.6 em?/mol << V* < 15.4 em?/mol with a mean of 13.4 em3/mol, If we be-
lieve that data faken at the high creep rates which obtain in the laboratory
can be extrapolated to the much lower creep rates which oceur in the mantle
(10-% s~! compared with 10~ §-1), then it would appear that the constitutive
relation for at least the upper mantle is quite strongly non-Newtonian and
the important question here is whether the influence upon convection will be
extreme. PARMENTIER ef al. [101] have studied non-Newtonian convection with
7 = 3 in the case in which the temperature dependence in (61) is suppressed.
This work shows very nicely that, so long as one defines an appropriate equi-
valent Newtonian viscosity, the properties of the convection are indistingunish-
able from those which obtain in the constant-viscosity Newtonian case. The
stress exponent #» must be very much larger than 3 in order to produce a sig-
nificant variation.

The final complexity which we wish to discuss in this subsection concerns
the effects of geometry. Although very little of the work which has been com-
pleted to date on the problem of convection in a spherical shell is completely
relevant to the mantle, there has been some which is nevertheless quite useful,
including that by Hsur ef ¢l. [102], YouNG [103], BUssE [104] and SCHUBERT

27 - Rendicondi S.I.F. - LXXVIIL
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and Younag [103]. Most of the finite-amplitude work has been concerned with
axisymmetric flows which are the spherical equivalent of rolls in a plane layer
and most have assumed constant transport coefficients. A single recent ex-
ample of the results which have been obtained in such work will demonstrate
the main effects of geometry for axisymmetrie flow in a shell heated from below
which has a ratio of inner to outer radius of 0.5 and which is thus close to that
for the Earth’s mantle. In fig. 34 we show a sequence of mean-temperature
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Fig. 34. — Radial variations of mean temperature for conveetion in a spherical shell
with a radius ratio of 0.5 as for the Earth. Note the development of an isothermal
core as in the plane-layer case but also the large asymmetry in temperature drops
across the two boundary layers which is forced by the spherical geometry (from
ref. [106]).

profiles across the shell for a variety of Rayleigh numbers up to about ten
times critical. The calculations are from [107] and illustrate the geometric
affects quite nicely. On this figure 0, is the steady-state conduction solution
and it will be observed that the conduction profile has a 1/r? curvature rather
than being linear as in the plane-layer case. This is simply a consequence of
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the fact that in steady state the total heat flow through each boundary of the
shell is the same and since the inner shell has smaller surface area and
(K &T'/cr) 4ar? must be constant, therefore ¢7'/cr is greater adjacent to the inner
boundary » = 1. For these Boussinesq calculations an isothermal core develops
in the interior as the Rayleigh number increases, just as in the plane-layer
case, but we observe a dramatic difference between the two thermal boundary
layers as geometry enforces the radial asymmetry. This effect might not be
nearly so dramatic in the Earth because the adiabatic gradient could mitigate
against it and this has been neglected in the Boussinesq model. Figure 35

streamtlines

isothenms

Ra.=2000 =6000 =10000

Fig. 35. — Meridional plane projections for axisymmetrie solutions in the spherical
shell as a funetion of Rayleigh number. Only even axisymmetrie solutions are shown
(from vef. [106]).

shows a sequence of meridional plane projections of streamlines and isotherms
for these axisymmetrie solutions [107] at slightly supercritical Rayleigh number.
The motion is dominated by the | = 4 mode, there being one fast cell and one
slow cell in each hemisphere, and upwelling both at the equator and at the
poles. As Ra inereases, the fast cell near the equator grows and the counter-
rotating cell is progressively more strongly confined to the polar region. These
calculations were performed using the spherical equivalent of the Galerkin
formulation discussed in seet. 4.

5'3. Temperature dependence of viscosity. — This is by far the most impor-
tant non-Boussinesq feature of the convective flows to be expected in the
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mantle, but there are severe problems associated with the direct incorporation
of the temperature dependence in (61) in a thermal-convection caleulation.
These problems are associated with the high Rayleigh number appropriate
to mantle eonveetion; the sharp thermal boundary layers develop huge vis-
cosity contrasts within them and the resolution required in a numerical cal-
culation becomes formidable. These difficulties have been responsible for
several attempts to simplify the problem, one of which has involved the intro-
duction of models in which the high-viscosity upper thermal boundary layers
are treated as rigid plates which are in a sense decoupled from the mantle
beneath them. RicHTER and PARrsons[14] modelled the lithosphere in the
laboratory with a mylar sheet, and by dragging this sheet across the upper sur-
face of a heated-from-below convection chamber showed that conveetion took
the form of rolls aligned by the shear in the mean flow into the direction of
motion of the sheet. They suggested that such shear-aligned convection could
be ocewrring in the mantle and it has become customary to call the « small
seale » of conveetion beneath the sheet (read lithosphere) the «second » seale
of mantle conveetion. There is no evidence that such convection exists. Indeed,
in terms of the simple model of mantle conveetion which I have stressed here
this second scale of conveetion could obtain only minimal amplitude. The
reason for this is elear. If the oceanic lithosphere is the thermal boundary
layer of the global convective cireulation, then the temperature field beneath
it is adiabatic and the boundary layer is not decoupled from the mantle. There
can be no strong convective instability beneath the plate because there is no
buoyvancy to drive it and there is no shear between the plate and the mantle,
A recent variation on this theme by PArsons and McKENZIE [106] appears
to concede that the original idea was suspect, but attempts rather to extract a
second scale of conveetion not from below the boundary layer but rather from
within it. Such boundary layer instabilities do oceur in constant-viscosity
fluids and in fact are responsible for the transition from rolls to bimodal flow
in heated below conveection as pointed out in sect. 4. In the mantle, however,
instability of the upper boundary layer is strongly suppressed by the tem-
perature dependence of viscosity. This is demonstrated explicitly elsewhere in
this volume [108]. It is in fact the high viscosity of the upper thermal boundary
layer which gives the surface expression of the flow its platelike charaeter.
Indeed, the viscosity contrast is so high that the surface material cannot
legitimately be called viscous and it is necessary to invoke nonhydrodynamie
processes such as melting in order to explain how it is that the hot upcoming
stream is able to reach the surface.

If the mantlewide convective circulation is at least partly driven by heating
from below (i.e. by the efflux of primordial heat from the core), then a lower
thermal boundary layer also exists and this will behave in a completely dif-
ferent manner from the upper boundary layer since in it the viscosity will be
extremely low. One should, therefore, expect that this boundary layer might
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be strongly destabilized and in consequence serve as a source of small-scale
plumes, the ascent of which to the surface could well provide an explanation
of the observations of voleanism and of hot spots in plate interiors which were
discussed in sect. 2 in reference to fig. 6. This idea is made plausible by virt ue
of the fact that material leaving the lower boundary layer not only has a buoy-
ancy excess, but it also has a viscosity which is mueh less than that which ob-
tains in the core of the cireulation. The ascent of such plumes has been studie d
in the laboratory by WHITEHEAD and LUTHER [109]. Convective disruption
of the low-viscosity lower boundary layer could be the source of the thin fast-
rising plumes which they have envisaged and should be seriously considered,
therefore, as the source of small-scale thermal anomalies in plate interiors.

It is interesting to note that there is strong seismological evidence for the
existence of a boundary-layer-like feature at the base of the planetary mantle.
The seismie D" layer with a thickness of approximately 100 km (about equal
to the swface lithospherie thickness) is a region in which the body wave ve-
locities show as rather abrupt departure from the depth variations of a smooth
model such as PEM1. The sense of this departure (a velocity decrease) is such
as to imply a temperature increase in this region with increasing depth and the
simplest explanation of D" ig, therefore, that it exists in consequence of the
existence of a thermal boundary layer above the core-mantle interface. Such
a boundary layer is expected if the lower mantle is also involved in the con-
vective circulation and its intensity is determined by the beat flux across the
core-mantle boundary. The larger this heat flux (weighted by the surface area
of the core) as a fraction of the total heat loss at the surface of the planet, the
greater the extent to which mantle convection is driven by heating from below.
We have already seen that the effect of geometry on steady-state heated-from-
below convection in a spherical shell is accommodated in such a way that the
thickness of the lower boundary layer remains approximately equal to the
thickness of the upper boundary layer for convection in a spherical shell for
which the ratio of radii is §. This means that the temperature drop across
the bottem boundary layer is 4 times that across the top boundary layer and
that the effeet of spherical geometry favours the instability of the lower
boundary layer relative to the upper. Even if mantle convection is driven sub-
stantially by internal heating, the geometry of the whole-mantle convection
model ensures the prominence of the lower boundary layer.

A second class of simplified models which has been introduced in conse-
quence of the complexities associated with the strong temperature dependence
of viscosity is distinguished by the fact that they treat the observed surface
plate motions as an externally prescribed quantity rather than as one which
is to be explained in a self-consistent fashion. Motions in the mantle are assumed
to be a consequence of plate motion rather than the cause of them and one
is inebitably left asking «why do the plates move? ». An example of such
a model is that employed by HAGER and O’ CoNNELL [110], who solve the Stokes
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flow equation in a sphere with depth-dependent viscosity subject to surface
boundary conditions on tangential veloeity appropriate to the observed pres-
ent-day pattern of plate motions. By fitting the model to the observed
Benioft zone dips in convergent regions they show that the purely kinematic
model favours whole-mantle convection. It is, however, precisely in the vi-
cinity of the downgoing slab (or the ridge) that the isentropic Stokes flow model
is most seriously in error because here the buoyancy foree is extremely impor-
tant and this cannot be encompassed in a Stokes flow model except by a priori
gpecification and this certainly cannot be accomplished uniquely. Although
such kinematic models provide a useful ingight into the constraints imposed
upon the flow by geometry, they provide no explanation for the flow itself.
The circulations implied by the Stokes flow model modified to include an a priori
buoyancy field may be quite different from those which actually obtain in
the mantle.

Aside from the important boundary layer effects which would be expected
in the whole-mantle style of econvection which I have advocated here, for a
mantle circulation whose rate is governed essentially by the mean viscosity
in its interior, an equally important role of temperature-dependent viscosity
will be due to the variation of the mean viscosity with time as the planet cools
or warms on the time scale of the Barth’s age. This brings us to the last major
topic which we shall consider in these lectures, which is the thermal history
of the Barth. As we shall see, it is in this connection that the temperature
dependence of viscosity assumes cruecial importance and it is only by con-
sidering the thermal history that we may fairly assess the extent to which the
model of whole-mantle eonvection is capable of reconciling the observa-
tional data.

6. — Mantle climate and the thermal history of the Earth.

The main characteristic of the simple mantle convection model which we
have been concentrating on above is that the circulation fills the entire mantle.
One question which this raises concerns the extent to which such efficient
convection might lead to solidification of the core and therefore to suppres-
sion of the magnetic field. The most stringent test of this possibility is clearly
in the case that convection is driven entirely by core cooling (i.e. by heating
from below). In[47,111] we have constructed simple « parameterized » con-
vection models in order to explore this and other questions pertaining to the
mantle convection hypothesis elaborated previously.

The basic idea is to design a thermal-history model which incorporates the
effect of mantle conveetion upon the internal-energy budget but does not re-
quire explicit solution of the Navier-Stokes equations. This is possible to the
extent that the convection may be considered quasi-steady and this depends
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upon the separation of the «fast» dynamic time scale associated with the
circulation and the ¢slow» time scale on which the mean temperature of the
interior changes. With such models we may focus our attention upon the long-
time-seale ¢ climatic » variability of the system and ignore the short-time-
scale fluctuations in « weather » which doubtless occur, but which are only of
local interest. This is an approach to the thermal-history problem which
TozeR [112] has long advocated and we have developed a simple scheme for
realizing such a model objectively. It is based upon the boundary layer theory
for heated below convection which was elaborated at the end of sect. 4 and
which we used to demonstrate the compatibility of the observations with the
whole-mantle convection hypothesis.

The simplest version of the model is based upon the following relations:
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where T is the mean temperature of the core, g, is the heat flux through the
core-mantle boundary and ¢, that through the surface of the planet due to
direct convection, 7, and r, are the radii of the core and of the planet, g, and
0., are the mean densities of the core and the mantle, AT is the temperature
drop across the mantle and AT, the adiabatic drop, and ¢, is the total heat
flux through the surface due to the combined effects of heat loss from the core
and the secular cooling of the mantle. » is the mean mantle viscosity which
depends exponentially upon temperature through Weertman’s empirical re-
lation (62¢) in which 7' is the temperature in the mantle at some mid-level
(i.e. outside the boundary layers) where the melting temperature is 7' . The
mantle temperature profile is constructed by matching conduction solutions
in the upper and lower boundary layers, whose thicknesses are determined by
the boundary layer theory when the heat flux is known, to an adiabatic profile
in the interior as discussed in the last section and in[111]. Given the mantle
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temperature profile we can compute 7' and then » for use in the Rayleigh
number. The factors involving r, and r, are corrections introduced in the
boundary layer theory to account for the geometry of the sphere. That we
can do this is a rather strong assumption which should be checked directly in
a complete shell model. The single prognostic equation (62a) is time-stepped
using a At sufficiently small that further reduction does not change the time
history.

As ean be readily seen by inspection of the simple system (62), it is one which
will be strongly controlled by the negative feedback due to the exponential
dependence of viscosity upon temperature. If for some reason the mantle is
becoming warmer in the mean, then from (62¢) the viscosity will drop and
from (62d) the Raylegh number will increase. From (62¢) this causes the
Nusselt number to increase and from (62b) the heat flux will likewise inecrease
and thus also the rate of cooling which will then act contrary to the original
tendency. The opposite reaction will oceur if the mantle is cooling, The system
is, therefore, self-regulating as TozER has suggested in the context of somewhat
different models.

Since a description of the thermal history involves the solution of an initial-
value problem, an important ingredient in the calculation is a model for plan-
etary formation from which one may deduce an initial temperature profile.
In[47,111] we used simple Mizutani models of aceretion with short aceretion
times such that the initial states were hot enough that most of the primordial
material was melted and thus gravitational differentiation of iron from silicates
was complete by the end of formation. Kaura [113] has recently shown, using
the more realistic Safronov model, that it is indeed very diffieult to avoid a
hot initial gravitationally differentiated state. Such models may have their
mantles largely depleted of radioactivity since the ions U™, Th', K' would
be squeezed upwards in the remaining melt during the primary erystallization
of the mantle because they are incompatible with the major phases. This is
based upon the notion that the silicate solidus is superadiabatic everywhere
and therefore that the mantle, cooling on an adiabat, solidified from the bottom
upwards. As argued in[111] it is, therefore, quite plausible that the thermal
state of the planet 4.5 billion years ago was similar to that which exists today
in the sense that it had a liquid iron core and a solid silicate mantle and it is
also plausible perhaps that the mantle contained little radioactivity. We will
illustrate the thermal-history model embodied in (62) by using it to see whether
we can obtain a rational thermal history in which mantle convection is driven
entirely from below and the initial state is hot.

In fig. 36 we show an example of such a caleulation from [111] in which,
although the mantle is depleted of radioactivity, the core contains 0.2 9%, po-
tassium as has been suggested by GOETTEL [114]. Inspection of the thermal
evolution shows that mantle convection is initially unable to keep up with the
radioactive heating of the core so that the core warms at first. Eventually,
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Fig. 36. — Evolution of the mean radial temperature profile with time for a thermal-
history model with parameterized convection in the mantle.

however, it begins to cool and the core geotherm intersects the superadiabatic
core solidus and the inner core begins to grow in radius. The latent heat released
upon solidification is taken into account in the calculation. As the planet con-
tinues to cool, the viscosity of the mantle rises and the Rayleigh number falls,
which inhibits further cooling. As suggested by the high-Rayleigh-number
asymptotic analysis, the boundary layers of the mantle convective circulation
begin to thicken. In fig. 37 we show the variation with time of the mean mantle
viscosity, the mantle Rayleigh number and the mean mantle heat flow for this
model which is labelled 6b) in the figure. The curve marked 4b) is for a model
which differs from the present one in that it has no potassium in the core, while
the dashed curve is for a model of Venus which also has potassium in its core
but which actually cools so quickly that the core solidifies. Model 6b) clearly
fits the observed present-day mantle viscosity and the mantle confribution
to the observed heat flow and it also fits the observed present-day boundary
layer thickness. Of course, whether this is the way the Earth evolved in fact,
we are in no position to say!

Simple parameterized convection models, such as the one discussed here,
would seem to provide a very useful tool for the future investigation of alter-
native thermal histories. They can easily be modified to include the con-
tribution to the convective heat flux due to radioactivity in the mantle, and
alternative models in which this effect is included should certainly be studied.
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number (b)) and the mean mantle heat flow (¢)) for a sequence of thermal-history
models with parameterized convection in the mantle.

In fact, on the basis of the geochemical arguments presented in O’Nions
et al. [115], there is now clear reason to believe that the mantle is at present
largely depleted of radioactivity, but that it did not begin to differentiate this
material into stable continental crust much befor about 3 billion years ago.
It seems quite likely that when this process is included in the thermal-history
model there will be no necessity of including any radioactivity in the Earth’s
core, the initial mantle radioactivity being sufficient to prevent too rapid cooling
of the planet.



MANILE CONVECTION AND VISCOSITY 427

7. — Conclusions.

The simple model of mantle convection advoeated in the preceding sections
differs considerably from the view which seems to prevail in most of the current
literature. Although it is almost ecertainly oversimplistic in that it negleets
mantle radioactivity entirely, it is nevertheless able to meet all of the observa-
tional constraints quite nicely. These include the mean plate size, the plate
speeds, the mean surface heat flow and the thermal-boundary-layer thickness.
The model does not appear to violate the constraints upon the thermal history
if at least some radioactivity is included in the mantle and the contribution to
the surface heat flux due to the secular cooling of the mantle is properly ac-
counted for. The main assumption on which the model is based is that the
convective circulation is mantle wide, filling the entire region between the core-
mantle boundary and the Earth’s surface.

Perhaps the most important ingredient in this theory is the magnitude of
the viscosity of the mantle which is inferred from studies of postglacial rebound.
Although this work has yet to provide a clear and unambiguous picture of the
detailed variations of mantle viscosity with depth, there are two extremely
useful pieces of information from it which contribute in an important way
to the internal consistency of the whole-mantle convection picture. These are
the nominal mean mantle viscosity of ~ 5-1022 poise and the inferred thermal
boundary layer thickness 6 ~ 100 km. Both of these numbers are in fact re-
quired in the convection hypothesis and do establish the internal consistency
of the model.

On the basis of the recent numerical work discussed in sect. 5, we are in a
reasonably good position today to be able to assess the importance of two
non-Boussinesq effects upon mantle convection. Neither viseous dissipation
nor non-Newtonian rheology can be expected to contribute in an important
way to the properties of the circulation. The only important effect of the dis-
sipation number, 7, is through the adiabatic temperature gradient which reduces
the vigour of convection and, because of the linear dependence of the adiabatic
gradient upon 7', introduces some radial asymmetry of the mean fields. The
most important effect of the presence of phase transitions (?) is liable to be
associated with the seismie discontinuity at 670 km depth across which there
should be some increase of the creep activation energy and therefore an in-
crease of viscosity. Some increase of viscosity at this depth also seems neces-
sary to reconcile the magnitude of the observed free-air gravity anomaly over
the Canadian Shield and the observed polar wander and nontidal acceleration of
the Earth’s rotation [96]. It does not appear that the maximum increase
of viscosity allowed by the data would be sufficient to inhibit the penetration
of convection through the 670 km discontinuity, but it should be sufficient
to perhaps explain why the deep seismic focal mechanisms are compressive.
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In this picture of whole-mantle convection there is an implieit interpretation
of the oceanic lithosphere. It is to be considered the cold thermal boundary
layer of the mantlewide convective ecirculation, whose platelike behaviour
occurs in consequence of its enormous viscosity. Because of the great contrast
in viscosity between the lithosphere and the mantle beneath it, it is in fact
possible to approximately measure the thermal-boundary-layer thickness using
glacial-rebound data as we have described. The Prandtl number of the mantle
fluid is so high that any very significant shear between the lithosphere and
the mantle is unlikely and strong coupling of the motion field is to be expected.
It seems unlikely in this eonnection that any second scale of convection of large
amplitude could occur in the near-surface region although a weak instability
is not inconceivable. It should not develop beneath the plates, because be-
neath the thermal boundary layer the temperature gradient is adiabatic. It
cannot develop within the plates because the viscosity is enormous and this
suppresses the thermal instability. The hypothesis of in approximately 1:1
relation between plates and convection cells seems to fit all of the observa-
tional constraints rather well. Perhaps the most interesting idea to emerge
from the thermal-history analyses is an understanding of the extent to which
the primordial heat content of the planet may contribute to driving its con-
vective circulations if the system is cooling.

L

I am very much indebted to my colleagues S. DE 1A CrUZ, G. JARVIS,
J. ScHUBERT and H. SHARPE for their permission to draw upon some of their
unpublished materials in the course of writing these lecture notes.
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