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Abstract

A gravitationally self-consistent model has been constructed which predicts the history of
relative sea level everywhere on the earth’s surface subsequent to a major deglaciation event. The
model has two unknown functionals which may be simultaneously constrained by comparing
predictions of the model with observations. These functionals are: (1) the space and time dependent
ice load on the surface, and (2) the radial variation of viscosity of the assumed linearly viscoelastic
(Maxwell) earth. Here the theoretical structure of this model is reviewed and extensions are
described to incorporate the influence of the lithosphere upon the relaxation spectrum. A limited
number of comparisions between observed and predicted relative sea level are described and on
the basis of the results obtained further extensions of the calculation are suggested.

1. Introduction

The response of the Earth and its oceans
to massive continental deglaciation is control-
led by two ‘functionals’ of the system, both of
which are imperfectly known. These func-
tionals, to which I have referred previously
as M and V (Peltier, 1976), respectively describe
the space and time-dependent surface mass
load to which the planet is subject and the
departure of its theology from perfect Hookean
elasticity. The former may be conveniently
separated into two distinct parts as M = M, +
M, where M, is the space dependent deglacia-
tion chronology and M, is the mass equivalent
variation of bathymetry at each point in the
ocean basins. If the hydrological cycle is
closed then it is clear that M; and M, are not
unrelated. In order to conserve mass during
deglaciation the integral of M over the surface
of the planet must vanish at all times. While
the determination of M is normally considered
to be the province of Quaternary geology,
the estimation of the rheology functional V has

been discussed most often in the geophysical
literature.

The link between these two unknown quanti-
ties is sea level, or more precisely, the history of
relative sea level at every point on the Earth’s
surface where ocean and land meet. Relative
sea level is of course an ‘observable’. Although
the existence of this connection through the
relative sea level data between the rheology
of the interior of the Earth and its deglaciation
chronology has long been appreciated, only
recently has a theory been elaborated in
terms of which the link is explicitly accounted
for. In terms of this theory it has proven
possible to reconcile a large fraction of the
global data on relative sea level with a single
deglaciation chronology and a single profile of
mantle viscosity. Although the remaining
misfits between theory and observation are
large in some locations, most notably in the
vicinity of the ‘proglacial forebulge’, agreement
is sufficiently close that we may be justified
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in expecting that refinements of M and V' will
lead to accord within the observational
uncertainty.

The detailed elaboration of this theory,
which will be reviewed in a cursory fashion
below, and accounts of its predictions are
contained in a series of articles published in
the past few years. Peltier (1974), extending
earlier work by Farrell (1972) and Longman
(1962) on elastic Earth models, invoked the
‘Principle of Correspondence’ to show how
one could describe mathematically the res-
ponse of a linearly viscoelastic (Maxwell)
Earth to impulsive gravitational interaction
with a point mass load. The Green functions
for this problem were then employed by
Peltier and Andrews (1976) to compute
approximate relative sea level curves based
upon the change in local radius and the
neglect of ocean loading. In this paper the
Green function for the perturbation in the
gravitational potential was also deduced and
a preliminary model of the deglaciation
chronology constructed. Farrell and Clark
(1976), using this deglaciation model and the
gravitational potential Green function, showed
how one could construct a self-consistent
integral equation for relative sea level which
satisfied the dual constraints of conservation
of mass and the fact that the surface of the
ocean must be an equipotential surface at all
times. This made use of earlier work by Farrell
(1973) on the elastic ocean tidal loading
problem. Peltier (1976) considered the inverse
problems of inferring M and V from the
relative sea level data and suggested that the
non-linear problem was amenable to attack
using an iterative method. Finally, Clark,
Farrell, and Peltier (1978) describe an extensive
(although preliminary) series of comparisons
between the predictions of theory and the
observations. Further extensions of these
calculations are suggested in the concluding
section.

2. Theory

Here discussion will be confined to the
theoretical structure of the forward problem
of predicting the time-dependence of relative

sea level given anaccurate deglaciation chrono-
logy. No attempt will be made to describe the
numerical methods employed to implement
this theory. The interested reader is referred
to the papers cited in the introduction for this
information. In order to illustrate the theory
and to extend it slightly I will consider Earth
models which have rigid lithospheres at the
surface and will compare the results to those
which do not. One of the current debates
concerning the anelasticity of the planetary
interior, which the relative sea level data
might be expected to resolve, is that concerning
the thickness of this manifestation of the cold
thermal boundary layer which forms the
outer shell of the planet. The existence of
this region inextricably couples the elastic
and viscous components of the rheology and
no previous spherical model has incorporated
its effect. Furthermore the lithosphere intro-
duces an additional time constant in the
relaxation spectrum of every purely harmonic
deformation of the surface, a time constant
which differs from both those for the funda-
mental mantle and core modes (Peltier, 1976).

The Laplace transformed field equations
for a self-gravitating viscoelastic Earth model
in the quasi-static approximation (inertial
force neglected) are

V-i—Vipgi-e,)—pVd+ gV -(pu)e, =0,
(1a)

Vig = —4nGV - (pi), (1b)
respectively the equation of momentum
conservation and Poisson’s equation for the
perturbation ¢ of the ambient gravitational
potential. The tilda represents implicit depen-
dence upon the Laplace transform variable s, p
is the density of the background hydrostatic
equilibrium configuration, g the local gravita-
tional acceleration,u the displacement field,
and G the gravitational constant. 7 is the
Laplace transformed stress tensor, which
for a Maxwell solid (Malvern, 1969) has the
form

Tj; = AS)eydy; + 2 uls)é;; (2)

i)
B As + uK /v

where As
S+ pfv

(3a)
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us

uls) S+ v (3b)
o 2
Kz/d-j,u, (3¢)

and where 4 and u are the normal Lamé
constants of elasticity. A(s) and u(s) are comp-
liances in terms of which the constitutive
relation (2) between stress 7;; and strain ¢;
has precisely the same form as that for a
Hookean elastic solid. In (3a) and (3b) v is the
equivalent Newtonian viscosity.

The mechanism by which the Maxwell
solid responds to an applied stress may be
readily understood by inspection of (3). Note
that s and p/v both have the dimensions of
inverse time. We define a ‘Maxwell time’ T,
such that

T, =v/p @

For s> T ! (the short time limit) A(s) — 4 and
p(s) — u and the material ‘behaves’ as a
Hookean elastic solid. In the long time limit
(s < T, ")As) = K, u(s)=vs and the material
behaves like a Newtonian viscous fluid with
viscosity v. The material is viscously in-
compressible in the long time limit since
K = A+ 3 is independent of s. These limiting
behaviours are in accord with the conventional
spring and dashpot in series analogy for a one
dimensional Maxwell medium (Malvern, 1969).
To solve the surface loading problem for
such an Earth model we invoke the ‘Principle
of Correspondence’. Operationally  this
amounts to little more than noting the analogy
between (2) and the equivalent Hookean
elastic form. We solve an ‘equivalent’ elastic
problem for many values of the Laplace
transform variable s and then simply invert
the spectral solutions so obtained into the
time domain. This equivalent elastic problem
is the following. Assume that the Earth model
is ‘excited’ by gravitational interaction with a
point mass load of magnitude 1 kg which is
brought to the surface from infinity at =0
and instantaneously removed. The solutions
for the displacement field and for the gravita-
tional potential perturbation may be expressed
in series form as (with the tilda suppressed).

u= E[U(rs}’ (cos O)e,

dP, (cos 0) .
+ V (rs)— 20 e‘,] (5a)
¢= ) ®(rs)P,(cos 0) (5b)

n=0

where P, (cos0) is the usual Legendre poly-
nomial of degree n, 0 is the angular distance
from the point of application of the load and
the U,, V,, ¢, are spectral amplitudes. In
analogy with the elastic problem these spectral
amplitudes may be expressed in terms of a
triplet of dimensionless scalar ‘Love numbers’
which are defined by

U, (r.s) h(r.s)/g
Vilrs) | = @,,0) 1(rs)/g (6)
O, (rs) k. (r.s)

where the spectral amplitude ®_  has been
expanded as @, =®, +®, where the @,
are the spherical harmonic coefficients of the
expansion of the potential of the surface point
mass load. The ®, , are independent of s since
the forcing is taken to be impulsive in the time
domain.

Examples of the Love number s-spectra
h (a.s), where a is the radius of the Earth, are
shown in Figs. 1 and 2 for two different visco-
elastic Earth models. The elastic Lameé para-
meters and the density are the same for both
models and are those for a standard Guten-
berg—Bullen A Earth. The two models there-
fore differ only in their viscosity structure.
In both models the core is assumed to be
inviscid and the presence of the inner core is
neglected. Fig. 1 shows Love number s-spectra
for a model which has v = 10?2 P (cgs) through-
out the mantle. It is the model which Cathles
(1975), Peltier and Andrews (1976), and Clark,
Farrell, and Peltier (1977) have suggested as
providing a ‘good’ fit to the relative sea level
data for a realistic deglaciation chronology.
Evident in these spectra are the viscous
(small s) and elastic (large s) asymptotes
described above. However this model has no
lithosphere and direct comparison of observa-
tion and theory shows that there are misfits
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Fig. 1. Love number s-spectra h,(a,s) for the first Earth model described

in the text. The model has v = 0 in the core and v = 10?2 P (cgs) throughout

the mantle; it has no lithosphere. Note the large s (elastic) and small s

(isostatic) asymptotes which exist for all n. The degree n of the Legendre
harmonic is marked adjacent to each curve

in the vicinity of the peripheral bulge which
may excede 1007, in magnitude. This is
precisely the region in which the influence of
the lithosphere is expected to be most impor-
tant. To remedy this defect we require an
Earth model which contains this feature.
Fig. 2 illustrates the effect upon the 4 (a,s)
spectra of a ‘lithosphere’ of thickness T'= 112.5
km in which v= . Here we have in fact
plotted hi(a,s) = h,(a,s) — h&(a) where the h%(a)
are the n-dependent elastic asymptotes. Com-
parison of Figs. 1 and 2 shows clearly that
the main effect of the presence of the litho-
sphere is to entirely suppress the viscous
relaxation of all sufficiently short wavelengths

(sufficiently large n). In Fig. 2 h%(a.s)=0 for
n> 150. This is entirely expected since short
deformation wavelengths are not able to
‘see through’ the rigid lithosphere to the
viscous region beneath and they are therefore

supported elastically. This is not, however,
the only effect of the lithosphere: it also
modifies the relaxation time spectra substan-
tially.

To see the way this works we invoke the
normal mode expansion for the Love number
s-spectra introduced by Peltier (1976) where
it was shown that h,(a,s) and k,(a.s) could be
exactly represented as, e.g.

h(as) =)

i .

&

L5

+ hE(a). (7)

I

Here the s; determine a discrete set of relaxa-
tion times 7; = sJT' which are associated with
the relaxation of the harmonic deformation
of degree n. These s; are eigenvalues deter-
mined by solving the associated homogeneous
boundary value problem and constitute a
discrete set of poles on the negative real s-axis
in the complex s-plane. The r; are the residues
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Fig. 2. A three dimensional view of the viscous part of the Love

number s-spectra for the second viscosity model. This model

differs from the first (Fig. 1) only in that it has a lithosphere of

thickness T = 112.5 km in which v = oo at the surface. Note that

for sufficiently large n = 150 b, (a,s)= 0 so that sufficiently short
wavelengths are supported elastically

at the poles s; for the inhomogeneous problem.

In Figs. 3 and 4 we show relaxation diagrams
for the two viscosity modes described above.
Inspection of these results indicates a strong
dependence of the modal structure upon the
lithosphere. When it is absent (Fig. 3) the
relaxation spectrum is dominated by two
main decay times, that for the fundamental
mantle mode denoted by MO and that for
the core mode (CO). The shear energy in these
modes is confined respectively to the earth’s
surface and to the core-mantle boundary
(Peltier, 1976). The relaxation diagram for
the model with lithosphere (Fig. 4) contains
an additional mode (LO) in which the shear
energy is confined to the vicinity of the base
of the lithosphere. Neither MO nor CO are
significantly effected by this feature for small
n (large wavelength). Comparison of Fig. 2
and Fig. 4 shows that viscous relaxation is

suppressed for values of n which exceed that
for which M0 and LO first become tangent.
For all n = 30 the decay time for MO is reduced
by the presence of the lithosphere and the
extent of this reduction increases with n.
This effect has been described previously
by McConnell (1968) in the context of a study
of non-gravitating half space models. It has
not been described previously for the spherical
self-gravitating models which are of interest
to us here.

Further inspection of Figs. 3 and 4 shows
that both models also support a family of
modes which have exceptionally long relaxa-
tion times. These ‘lower’ modes are labelled
M1, M2,..., etc. in the figures and an analysis
of the radial distribution of shear energy
within them shows that the energy density
peaks in the transition region of the mantle
for small n (Peltier, 1976). The physical
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Fig. 3. Relaxation diagram for the first viscosity model where v = 10?2P

(cgs) throughout the mantle. The ordinate s is the inverse relaxation time and
the time is non-dimensionalized with respect to the scale [1]=10® years.
Note that for large n the fundamental mantle mode (MO) is a straight line on
this diagram as predicted by the uniform, non-gravitating half space model

mechanism which supports these modes is
embodied in the fourth term on the left-hand
side of the momentum balance equation (1a).
From the linearized form of the equation of
continuity V - (pu) = — p', where p’ is the per-
turbation density field; thus the fourth term
is —p/ge, which is just the Laplace trans-
formed buoyancy force per unit volume.

Now in the elastic 'imit t < T, it is clear
that this term must be retained; however in
the viscous limit t> T, the retention of the
buoyancy force in the linearized momentum
balance equation involves an implicit assump-
tion regarding the relation between the back-
ground density field p(r) and that which would
obtain if the radial variation of background
temperature were adiabatic. To see this we may
argue as follows. Neglecting isothermal comp-
ressibility the linearized form of the equation of
state is just p' = — paT’ where o is the coeffi-
cient of thermal expansion. Furthermore the
linearized and time integrated form of the
equation of energy conservation for a fluid

gives
dT oTg
- [_d e ]

P

T.r

Il

Thus p'ou (dT/dr+ oTg/c,) and the term in
brackets is the difference (since dT/dr < 0 and
T>0) between the actual and adiabatic
temperature gradients. Thus if the background
temperature field is everywhere adiabatic
then p'=0 (regardless of the displacement
field) and the fluid will feel no buoyancy force.
This is an important point which requires an
assumption to resolve. If we believe that the
mantle is convectively ‘mixed’ then the effect
of that mixing will be to establish a nearly
adiabatic temperature profile (except perhaps
through phase changes) in consequence of
which the “fast time scale’ viscous gravitational
relaxation will not be influenced by buoyancy.
Here we have retained this contribution to
the momentum balance and the result is the
appearance of a family of modes with long
decay times in the relaxation spectrum. In a
a series of calculations which will be described
clsewhere these effects have been analysed
in detail. The existence of these modes does
not, however, effect the performance of the
model substantially since they are excited
very inefficiently.

The Laplace inverse of s-spectra like (7)
for either h,(s) or k,(s) is simply given by
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Fig. 4. Relaxation diagram for the second viscosity model which has a

lithosphere of thickness T = 112.5 km in which v = co. Note that this relaxa-

tion diagram differs from that in Fig. 3 by the presence of an extra mode of

relaxation (LO) which is entirely due to the presence of the lithosphere. In

addition the fundamental mantle mode (MO) has decreased relaxation time
for all n = 30. The core mode (CO) is unaffected by the lithosphere

h(a,t)= Z rie %'+ hE(a)d(t), (8)
i

and it should be recalled that this time domain
response is that for an impulsive forcing.
However this is not the response in which we
are most interested. What we actually require
is an expression for the spectral amplitudes
of the solution in response to a point mass
which is applied at t = 0 and allowed to remain
on the surface for all subsequent times. We
may obtain this from (8) simply by convolution
with a Heaviside step function H(t). The
result is simply

Rar=Tha- e, O
i i

= hE(e) +

and similarly for k”(a). These time domain
forms are illustrated for the two viscosity
models in Figs. 5 and 6 respectively. The most
notable feature in these decay spectra which
are plotted for h-*(t) only is the striking differ-
ence in the amplitude of the response for
n> 30 between the model with and without
lithosphere. For n =150 the model with
lithosphere (Fig. 6) shows no viscous relaxa-
tion. This was seen previously by direct
inspection of the s-spectra.

In the limit t — o the planet and the point
mass resting on its surface tend towards a
new gravitational equilibrium configuration
which is explicitly dependent upon the litho-
sphere thickness. This new isostatic state is
one in which the spectral amplitudes have
magnitude (Peltier, 1976).
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Fig. 5. Decay spectra h'"(t) for the first viscosity
p n

model (no lithosphere). Note that the final amplitude

of h!**(1) is a continuously increasing function of n

for this model. The value of n is marked on each

curve and the time is shown in units of thousands of
years

-~
- 1
11 L
& EeEEEr
ad D B S .
ST T T T | T T T T 1
©0 2 4 6 B8 10 I2 14 16 1B 20

tHKYrs) —

Fig. 6. A three dimensional view of the ‘relaxation surface’ h*(1) for
the model with lithosphere. Note that for sufficiently large n = 150 the
amplitude of the harmonic of degree n shows no viscous relaxation.

It is entirely supported elastically

Lim hf(a,t)= Y "L + hE (10)
1+ i SJ-

= Limh,(a,s)
t—0
as can be seen by direct inspection of (9) and

(7). More formally we see that this is simply
a consequence of the Final Value Theorem

for Laplace transform pairs. From Fig. 1 or
5 it is clear that for the uniform v model the
final amplitude (10) is infinite in the limit
n — o0 and from Fig. 2 or 5 we see that this
infinity is removed by the introduction of a
lithosphere of finite (non-zero) thickness.
Physically, this infinity is a simple consequence
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of the fact that a point mass resting on the
surface of a wviscous sphere will eventually
sink to its centre since this is the only location
at which it will feel no net force. When, as
here, the lithosphere is treated as a shell
with infinite viscosity this effect is prevented
and all sufficiently short wavelengths are
supported elastically. In the context of the
present fully self-consistent viscoelastic model
it is not necessary to specify separately a
‘flexural parameter’ for the lithosphere as has
become common in the description of viscous
half space models of the relaxation process.
All of this information is contained ab initio.

In terms of the relaxation spectra h”(t) and
kH(1) we may describe the process of isostatic
equilibration in response to the point mass
forcing in terms of any one of a number of
signatures of the process. For example we
might wish to know the time-dependent
variation of the local radius or the variation in
the vertical component of the gravitational
acceleration or the variation of the gravita-
tional potential on the deformed surface.
These are the various Green functions of the
process and they may be calculated by sum-
ming infinite series as described by Longman
(1962) and Farrell (1972) for the elastic problem
and by Peltier (1974) for viscoelastic models.
Explicitly the expressions for the change in
radius, the gravity anomaly, and the potential
perturbation are respectively

Nl

Uf{a,ﬂ,r):Mi WP (cos0)  (lla)
en=0

¢"(@,0.0)= -2 3 (n+ 21"

en=0

— (n+ HK")P, (cos ) (11b)

hiP, (cos 0)
(11lc)

where M, is the mass of the Earth and where
(11b) and (11c) describe the variations at a
point on the deformed surface. The Green
functions for radial displacement for the two
viscosity models are shown in Figs. 7 and 8,
respectively for the model without and with a
lithosphere. Since the expressions (11) are

dMa,0,1)= L—Q Z (1+ k" —

en=0

infinite series it is clear from the previous
discussion that the viscous parts will diverge
at small 6 as t — o in the model without
lithosphere. This tendency is precisely that
which is observed in Fig. 7. It is therefore not
possible to define an ‘isostatic’ Green function
when the lithosphere is absent. This is parti-
cularly important insofar as the comparison of
predicted and observed gravity anomalies is
concerned since the anomaly which we observe
is really a measure of the degree of deviation
from isostatic equilibrium. If the model cannot
predict the final amplitude of the response
then it certainly cannot predict the deviation
from this final isostatic state which is recorded
in the present day gravity anomalies.

Once the thickness of the lithosphere T is
set then the isostatic asymptotes of the Love
number s-spectra are fixed in turn and the
isostatic Green functions are determined by
summing along these small s asymptotes. The
accuracy of the normal mode expansions for
h, and k, may be checked in the isostatic limit
by comparing the two expressions in (10). In
Peltier (1976) the uniqueness of the state of
isostatic equilibrium was invoked in the
construction of a perturbation theory for the
inference of mantle viscosity from the relative
sea level data. This uniqueness exists only if the
lithospheric thickness is not allowed to vary
in the process of iterative improvement of the
viscosity profile. Each time T is reset a new
isostatic state results.

3. Implementation of the Theory

The Green functions in (11) are convenient
summaries of the way in which a viscoelastic
planet responds in the course of gravitational
interaction with a point mass load on its
surface. This interaction is the essence of
glacial isostasy since the melting of glacial
ice and the simultaneous filling of the ocean
basins is a process which simply involves the
redistribution of mass on the surface. If'it were
possible to observe directly, say, the time-
dependence of the local radius of the planet at
cach point on its surface then one could
construct a theory for the prediction of this
observation simply by convolution of the
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Fig. 7. Viscous part of the Green function for radial displace-
ment u ' defined in equation (11a) for the first viscosity model
(without lithosphere). In this diagram the function has been
normalized by multiplication by (af)) to remove the effect of the
geometric singularity as 6 — 0. Note that in spite of this normal-
ization the amplitude of the response continues to increase with
increasing t and diverges as t — oo (for small ) as discussed in
the text

Green function for radial displacement with
the space and time-dependent surface load.
This prediction would then take the form

AR(O,2,t) = [ [dQuP (O — 0,4 — X' ;0)M(@', X')
(12)
where for simplicity it has been assumed (i) that
the entire load redistribution takes place
instantaneously at ¢t = 0, and (ii) that prior to
t =0, the Earth and its ice sheets and oceans
were in isostatic equilibrium. In (12) M has
the dimensions of mass per unit area (density x
thickness). The first assumption is obviously
incorrect but it may be easily relaxed since a
general history of load redistribution may be
approximated to any accuracy by a series
of discrete redistributions which are appro-
priately phased in time (see Peltier and
Andrews, 1976).
We may test the second assumption directly
by inquiring as to the time required to reach

isostatic equilibrium after removal or applica-
tion to the surface of a Laurentide or
Fennoscandia size ice cap. If we consider a
circular ice cap of radius r, = 15°, so that the
forcing is approximately of Laurentide size,
and use u, for the viscoelastic model with
lithosphere in (12) then the time-dependent
response is that shown in Fig. 9. Inspection of
this result illustrates two important points.
Firstly, the relaxation time at the centre of the
depression is strongly time-dependent with
longer relaxation times becoming progressively
more apparent as time proceeds. This is a
direct consequence of the fact that in the
spherical model each harmonic wavelength
has a complete spectrum of relaxation times
available to it as we have shown. The impor-
tance of each mode depends both upon the
extent to which it is ‘excited’ by the point
forcing (i.e. the r; associated with each s;ata
particular n) and upon which n are promoted
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Fig. 8. A three dimensional view of the viscous part of the
Green function for radial displacement u "~ for the visco-
elastic model with lithosphere. As in Fig. 7 the function
has been normalized by multiplication with (at!) to remove
the geometric singularity. Here the solution does not
diverge at small ¢ and it is possible to calculate the iso-
static Green function for the limiting time ¢ — co. This is
marked explicitly on the figure

to dominance by a particular load history
(spatial scale). The second point to note from
Fig. 9 is the extremely long time required for
the response to attain its full isostatic level in
the central depression.

This long time scale for the late time interior
response is a direct consequence of the
existence of the higher modes due to buoyancy
which have been retained in the models under
discussion here. Models which support such
higher modes have a ‘long memory’ of their
past loading histories although their initial
response to unloading is characterized by
relatively short relaxation times. Such beha-
viour, and an understanding of those physical
mechanisms through which it may be
engendered, could be important for the re-
conciliation of rather large gravity anomalies
with short observed relaxation times. Gravity
anomalies ‘see’ the long time ‘tail’ of the relaxa-

tion curve whereas relative sea level is a
memory of the initial response only.

Now equation (12) has been employed by
Peltier and Andrews (1976) and its spectral
equivalent by Cathles (1975) to calculate the
approximate variations of relative sea level
which are forced by a realistic deglaciation
event (e.g. following the last glacial maximum).
The use of (12) assumes in effect that the sea
level variation is dominated by the variation
of the radius of the solid earth and neglects the
contribution to changes in sea level at the
surface due to redistribution of mass in the
interior. It also neglects the geoid variations
which are effected by the self-gravitation of the
oceans themselves. We may assess the validity
of (12) only by doing a fully self-consistent
calculation.

Before describing this calculation we first
implement (12) and illustrate the extent to
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which it is capable of providing accord with
the observations. We require a model load
history M(0, Z,t) where in general M = M, +
M, as before. A discrete form of M, has been
tabulated by Peltier and Andrews (1976)
from which may be deduced to model ‘eustatic
curve’. This is simply the mean increase in
ocean depth as a function of time which,
given M (t) (assumed negative for load remo-
val)) may be calculated by assuming
conservation of mass (M, = — M,), using the
known area of the oceans and converting to a
depth equivalent as

<

1)

orw

(13)

N EUS —

Ma

where A, is the area of the ocean basins and p,,
is the density of water. The model eustatic
curve is compared in Fig. 10 with the ‘observed’
eustatic curve of Shephard (1963). The model
deglaciation history is thus reasonable in this
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Fig. 10. Comparison of the model eustatic curve

based upon the deglaciation chronology listed in

Peltier and Andrews (1976) with the ‘observed’

custatic curve of Shephard (1963). Note that in the

model it is assumed that no changes in eustatic sea
level occur after 5 k years BP



Ice Sheets, Oceans, and the Earth’s Shape 57

MODEL
jiis
/
!
/
160 Ottawa Is. / ® MopEL
- ® = Theory

H{m)

t(KY BP)

Fig. 11. Comparison of the approximate relative sea
level prediction based upon equation (12) with the
observed relative sea level data at the Ottawa Island
site in Hudsons’ Bay. The theoretical curve marked
‘1’ is for the v = 10*? P (cgs) uniform model. The curve
marked ‘3’ is for an Earth model which has a high
viscosity lower mantle in which v=102*P from a
depth of 10* km to the core-mantle boundary

sense. Now equation (13) is really an integral
constraint on the melting history and we do not
wish to suggest by it that the meltwater added
to the oceans leads to a uniform rise of bathy-
metry everywhere although this is the conven-
tional assumption. Such a redistribution of
mass to the oceans would lead to an ocean
surface which was not a gravitational equi-
potential and the ocean would therefore not be
in equilibrium. This is impossible. The question
which we must answer given a model M (0, 4, 1)
is ‘How must the meltwater be distributed over
the ocean basins such that the new ocean
surface is indeed equipotential?”. Again, to
answer this question requires the gravita-
tionally self-consistent theory.

Initially we assume M, =0 so that the
load redistribution M does not conserve
mass. Inserting M =M, in (12) we do the
convolution employing two Green functions
u? for models without lithospheres. The first
of these has v =10%2P everywhere and the

second has v= 10?2P in the upper mantle and
a lower mantle with v = 10**P from a depth of
10°km to the core mantle boundary. In
Figs. 11 and 12 we compare AR(6, 4,t) with the
observed relative sea level curve at two sites.
The first site is the Ottawa Islands site in
Canada (Fig. 11) which is located near the
centre of what was the Laurentide ice sheet and
the second is for Florida on the southern tip
of the eastern seaboard of the continental U.S.
(Fig. 12). The agreement between the observa-
tions and the predictions of the v=10%?P
uniform model is excellent. The model with the
high viscosity lower mantle is incompatible
with the data. Such comparisons have led
Cathles (1975) and Peltier and Andrews (1976)
to suggest that rheological models which have
rapidly increasing viscosity with depth are
excluded by the rebound observations. If
this suggestion is correct the consequences
for mantle convection are important. Peltier
(1972) has shown that if the mantle viscosity
does not increase rapidly with depth then the
radial ‘mixing length’ for convection should be
on the order of the thickness of the mantle
itsell. If mantle wide convection is in fact the
preferred mode of heat transport then it is
possible to understand the large horizontal
scales observed in the present day configura-
tion of surface plates.
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Fig. 12. Same as in Fig. 11 but for Florida. Notice

that the model with high viscosity lower mantle

predicts present day emergence whereas the observa-

tions and the v=10%*?*P uniform model indicate
present day submergence
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Because mantle rheology plays such an
important role in geodynamic models of the
long time scale convective piocesses we must
question carefully the applicability of (12)
which has been used to infer it from the
rebound data. Firstly we must correct the
predictions of (12) described above such that M
is forced to conserve mass. If we make the
correction by assuming M (t) is uniformly
distributed over the ocean basins, such as
1s conventional, then the corrections for
t <5 K years BP should be small in the ‘near
field" of the ice loads (Peltier and Andrews,
1976). However, such a correction is not
gravitationally self-consistent as discussed
above. What we require is a new theory for the
prediction of relative sea level on a deglaciat-
ing Maxwell Earth which is self-consistent.

Such a theory has a particularly succinct
and manageable form when it is constructed
using the viscoelastic Green functions dis-
cussed in section 2. The function ¢"(a,6,t)
defined in (1l¢) and calculated in Peltier
and Andrews (1976) plays a fundamental
role in the self-consistent model. That this
turns out to be so should not be surprising
since ¢ determines the perturbation in
gravitational potential forced by the point
load. Clearly the sea level variation must be
intimately related to variations in potential
since the surface of the oceans is constrained
to be a gravitational equipotential at all points
and for all time. The connection between ¢"
and sea level S(0, 4,t) on a deglaciating Earth
has been described by Farrell and Clark (1976)
following an earlier application of the same
method by Farrell (1973) to a different prob-
lem. For a complete derivation the reader is
referred to these articles. The gravitationally
self-consistent equation for § is

H M H
S(flj.,f):—*M._ _J“<¢_*M>o
g Aﬂp“'

where {x)_ denotes the average of the function
x over the surface of the oceans, % indicates
convolution in space, and we have assumed a
single instant of melting as before. Now (14) is
an integral equation for S because M is S
dependent. Indeed we express M in the form

M=pl+pS (15)
where I(0,2,t) and S(0,4,t) are respectively
the local variations of ice thickness and water
thickness. Given ¢" for a particular rheological
model and a deglaciation model [I(0,4,1)
equation (13) may be solved by relaxation to
determine S(0, 4,t). The § determined in this
way actually describes the change in sea level
with respect to a ‘vertical metre stick’ which is
rigidly attached to the surface of the solid
Earth. This is essentially due to the fact that
¢™ defined in (11c) contains the Love number
h' and thus the potential perturbation in-
cludes a contribution from the local change in
radius as well as the contribution (from k)
due to the redistribution of mass in the
interior. Averaging (13) over the oceans’
surface we see that the conservation of mass
constraint is also satisfied. When we predict
sea level variations using (13) the prediction
need not be corrected for the ‘eustatic rise’.
This is internally and consistently accounted
for. Furthermore, from (13) the local rise in
sea level will not be uniform over the ocean
basins and the degree of non-uniformity is
just that, by construction, which is required
to ensure that the surface of the ocean remains
a gravitational equipotential at all times.
Clark, Farrell, and Peltier (1978) have des-
cribed a complete set of sea level predictions
using (13) and have compared these predictions
with observations. These calculations were
done using ¢ for the uniform viscosity model.
Here, in Fig. 13 we illustrate this function for
the model with lithosphere. In a later paper in
this book Clark describes these calculations
in detail. Here I will discuss a few examples
from North America to illustrate the
characteristic misfits which remain but before
doing so I would like to demonstrate the
extent to which predictions made using either
(12) or (14) are compatible. This will enable us
to understand the extent to which we should
be prepared to accept the conclusion of
Cathles (1975) and Peltier and Andrews (1976)
vis-a-vis the viscosity of the mantle.

In the near field of a disintegrating ice
sheet the ice forcing will dominate the water
forcing since p,I> p,S so that (14) is no
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Fig. 13. Three dimensional view of the viscous part ¢"*(0.r) of

the Green function for gravitational potential perturbation for the

model with lithosphere (T = 112.5km). As in Figs. 7 and 8 the

function has been normalized by multiplication with (af)) to remove
the effect of the geometric singularity at the origin 0 =0

longer an integral equation, S appearing only
on the left-hand side. Furthermore, for times
sufficiently long after deglaciation is complete
the last two terms will both be sensibly
constant at a given site. These terms will
therefore not contribute to further changes of
sea level S. Subject to these two approxima-
tions (14) then becomes
¢H
S0, 4,1) = g *p,] — Constant  (15)

and for comparison, (12) is of the form

AR(0,7,t) = u * p, I (16)

The two predictions of sea level variations
with respect to present day sea level at any
fixed site therefore differ only as the functions
¢"/g and u". From (11) these are

¢ _a i (1+ k" — h")P, (cos 0) (17a)
{)' M&:’]IZD ! ! !
ut :n_j Z REP (cos0) (17b)

en=0

Now the first term in (17a) which represents
the ‘direct’ contribution of the load to the
potential fluctuation will lead only to an

additional constant bias at each site since it is
time-independent. If k! were such that k" < h¥
then (15) and (16) would lead to identical
predictions. Equation (15) would predict a
fall of sea level proportional to — h' and (16)
would predict an uplift of the surface propor-
tional to + h". The predictions would indeed
be identical. The question then is whether the
about inequality is in fact valid. Peltier (1974)
has shown that the viscoelastic Love numbers
are such that nk™ = 0(h") for realistic Earth
models, a result which is also true of their
purely elastic counterparts (Fd&rrell, 1972).
Thus, for sufficiently small ice sheets spherical
harmonic decompositions are dominated by
large n, we may use (16) to predict relative sea
level and expect that these predictions will be
accurate in the near field. For large ice sheets,
however, even in the near field and for times
sufficiently long after melting (16) may be
inaccurate and at least the simplified version of
(14) (i.e. (15)) must be employed. From a more
specific point of view what this means is that
for n = 5 (the Laurentide ice sheet) (16) may be
significantly in error whereas for n = 16 (the
Fennoscandian ice sheet) (16) will be reason-
ably accurate. Of course (16) will not be
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Fig. 14.(a) Computed and observed relative sea level for the Ottawa Islands, Hudson

Bay, Canada (59.5°N, 80°W). The observations are the data of Andrews and Falconer

(1969). The predicted emergence is considerably in excessed of the observations (see text
for discussion). After Clark, Farrell, and Peltier (1978)

Fig. 14.(b) Computed and observed relative sea level for Inugsuin Fiord, Baffin Island,
Canada (69.5°N, 70°W). The observations are those of Lgken (1965). After Clark,
Farrell, and Peltier (1978)

accurate even in the near field of the source
for times which are within the period of active
deglaciation and it will never be accurate in
the far field where ocean loading effects are
dominant.

The above analysis casts some doubt there-
fore upon the interpretations of mantle
viscosity based upon (16) which have
recently been presented by Cathles (1975)
and by Peltier and Andrews (1976). In order
to be sure of our interpretation we must
employ the self-consistent model (14). Such a
program has been undertaken in which the
self-consistent sea level equation (14) coupled
with the inverse theory described by Peltier
(1976) are used to refine the viscosity model
and the load history. This work will be des-
cribed elsewhere when it has been completed.
It may turn out as a result of these calculations
that moderately high lower mantle viscosity
will not be rejected by the gravitationally self-
consistent model although I think it more
likely that the original conclusion will be
reinforced.

To illustrate the misfits which remain I will
describe here a few of the results recently
obtained by Clark, Farrell, and Peltier (1978)

based upon the application of (14) for an
Earth model in which v = 10??P between the
core-mantle boundary and the surface. In
Fig. 14 are shown relative sea level curves
for two sites: (14a) is for the Ottawa Islands,
the same location for which the previous
calculation (Fig. 11) was done using the Green
function for radial displacement and neglect-
ing ocean loading. The new calculation over-
estimates the total sea level fall for this parti-
cular site. It may be that the residual water
load over Hudson Bay has been inadequately
accounted for or that the lithosphere has a
non-negligible influence even in the central
depression. The same tendency is observed
for Inugsuin Fjord on Baffin Island although
here the agreement between observation and
theory is much better, particularly in most
recent times. Inspection of (14) or its simplified
form (15) shows the errors between observed
§ and the prediction are as strongly coupled to
errors in the load history as they are to errors
in the viscosity model. However the load
history which we employ (Peltier and Andrews,
1976) has a maximum thickness of 3.5km
over Hudsons Bay and ifanything this may be a
lower bound according to ice mechanical
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Fig. 15. Comparison of computed and observed relative sea level curves for a series

of sites along the eastern seaboard of the USA. The locations and data sources are

(a) Brigantine, New Jersey (39.4°N, 74.4°W): Stuiver and Daddario (1963): (b) Virginia

(37.6°N, 75.7°W): Harrison and colleagues (1965) and Newman and Rusnak (1965);

(c) Georgia (31"N, 81.4°W): Wait (1968); (d) Bermuda (32.3°N, 64.7°W): Neumann (1971).

Note that for all these sites the predicted submergence is much greater than that observed.
After Clark, Farrell, and Peltier (1978)

calculations, on the actual thickness which in
fact existed. If we were to increase the ice
thickness in the central dome the disagreement
between theory and observation would be
further magnified.

In Fig. 15 are shown the comparisons of
observed relative sea level and the prediction
for a sequence of sites located along the
eastern seaboard of the U.S. The precise
locations are described in the figure caption.
In this region of submergence which is forced
by the collapsing forebulge, although the
qualitative form of the prediction (continuous
submergence) is correct, the degree of submer-

gence is considerably overestimated. There are
misfits which are on the order of 100% of that
which is observed.

If we consider sites which are located still
further from the original location of the ice
sheet the fit begins to improve considerably.
In Figs. 16a and b are shown data for Florida
and for the Gulf of Mexico respectively.
Fig. 16a should be compared to the previous
calculation (Fig. 12) which was done using the
Green function for the variation of local radius
and neglecting ocean loading. The self-
consistent calculation gives a reasonably good
fit but predicts a small amount of present day
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Fig. 16. Computed and observed relative sea level
curves for (a) Florida (29" N, 84"W): Scholl and
Stuiver (1967), and (b) Gulf of Mexico (27 N,95 W):
Curray (1960). After Clark, Farrell, and Peltier (1978)

emergence which is not observed. For the
Gulf of Mexico (Fig. 16b), which has an
extremely long record of relative sea level
variation, the theory and observation are in
rather close accord.

Given the above described discrepencies
between theory and observation it is perhaps
tempting to suggest that the deep mantle
viscosity may be too low in the model. How-
ever, in the far field of the ice loads, where the
self-consistent model is also valid, observation
and theory are in agreement. Since the relaxa-
tion in the far field at mid oceanic sites is
dominated by small n which ‘see’ the lower
mantle rather clearly we are reluctant to
abandon the 10%2P uniform model. The alter-
native explanation, that the misfits are due to
the absence of a lithosphere in the model, is

perhaps more attractive. Since the effect of the
lithosphere is felt only in the near field and since
this is where the largest misfits exist, it might
be expected that the ‘right’ choice for the
lithospheric thickness may lead to agreement
with the data. A complete series of self-
consistent calculations using the Green func-
tion described previously for a model with a
lithospheric  thickness of 112.5km have
recently been completed. Although this model
gives a better fit to the data at the Ottawa
Islands site in the central depression it does
not improve the fit in the vicinity of the peri-
pheral bulge. On the basis of the good fit to the
near field data in Fennoscandia (see Clark, this
volume) we believe that the remaining misfits
associated with the Laurentide recovery are
due to an excessive load removal over Hudsons
Bay (i.e. to errors in the local deglaciation
chronology).

4. Conclusions

A complete and gravitationally self-
consistent model for the prediction of varia-
tions of post-glacial sea level has been
successfully constructed. The main physical
assumption in the model is that the response
of the Earth to mass loads applied to its
surface is Newtonian. Our object in applying it
is to test this hypothesis of Newtonian beha-
viour. We are not yet in a position to claim
that it has been possible to find a single profile
of the variation of viscosity with radius which
reconciles theory and observation. Some of the
misfits which remain may be due, in fact are
surely due, to errors in our assumed deglacia-
tion history. Also, and as we have suggested
implicitly above, some of these errors may be
due to the assumption that 20,000 years ago at
glacial maximum the Earth and its ice sheets
and oceans were in isostatic equilibrium.
The process of disentangling these various
effects will require a good deal of further
calculation.

Here we have extended the theory slightly by
determining the required Green functions for
Earth models which have a rigid lithosphere
at the surface and discussing their properties.
The effect of the lithosphere has not been
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previously incorporated in any spherical model
of the isostatic adjustment process. If one is
interested in calculating the final isostatic
response to a given applied load then it is
mandatory that this region be included in the
model. The lithospheric thickness (if the
region is treated as perfectly elastic) determines
the extent to which each harmonic constituent
in the deformation is supported elastically.
Since observed gravity anomalies are explicitly
related to the departure from equilibrium,
and since lithospheric thickness strongly
modulates the final amplitude of the viscous
relaxation, thus the computation of gravity
anomalies requires the use of a model with
lithosphere. In future calculations the observed

gravity anomalies will be incorporated as
further constraints on the model.

An additional effect which we are now
preparing to explore is the extent to which the
rotation of the Earth itself 1s affected by the
deglaciation process. The redistribution of
surface mass produces relatively large changes
in the components of the inertia tensor and
as the shape of the Earth relaxes following
deglaciation a continuous change in the rate of
rotation (length of the day) will result. Using
the variation in surface load computed from
the gravitationally self-consistent model we
will be able to calculate this effect rather
accurately and to compare it to the
astronomical data.
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