

Highlights of Top Quark Production Measurements at ATLAS

Pekka K. Sinervo, C.M., FRSC University of Toronto

Representing the ATLAS Collaboration

Talk at QCD@LHC, Buffalo, NY July 2019 Why Top Quarks?

Heaviest known particle, only "bare" quark

- High statistics allows both precision measurement and search for new physics.
- ft complex final state but not too complex fostering:
 - Theoretical and experimental advancements
 - Fine details not yet completely understood: NNLO calculations still rather new / not matched to PS, ft/tW/WbWb interference effects, ...

See, e.g., M Grazzini's Plenary Talk

LHC and ATLAS

Exceptional machine & detector performance

Only a very small fraction of the total LHC + HL-LHC luminosity collected/analyzed so far! ~150 fb⁻¹ at \sqrt{s} = 13 TeV collected in Run 2

 $N = \mathcal{L} \cdot \sigma_{t\bar{t}}$ $\sigma_{t\bar{t}} \sim 830 \,\mathrm{pb}$ $\mathcal{L} \sim 15 \times 10^{33} \,\mathrm{cm}^2 \mathrm{s}^{-1}$

~750 ft pairs produced per minute

Focus today:

Couplings

Production cross-section(s) Differential measurements Single top Associated production

Searches

Resonant production (Z', gкк) Vector-Like Quarks (VLQ)

Other topics covered in various talks e.g., ATLAS+CMS results, Robert Vallance

Cross-Section

"Can you count how many top quarks are produced?"

The "Big Picture"

Top Quark Production Cross Section Measurements

Status: November 2018

ATL-PHYS-PUB-2018-034

Comparison with theory

Fiducial phase-space

- Similar kinematic reconstruction at detector- and particle-level objects
- Reduce extrapolation uncertainty
- Endpoint of the theoretical prediction

Full phase-space

- NNLO+NNLL (+EKW) accuracy only available by asking favourite theorists, often slow turnaround
- Larger extrapolation to low-pτ, high-η
- Observables must be infrared safe

Kinematic reconstruction

Single lepton resolved - PseudoTop

 Mass constraints (mw, mt) and b-tagging information to reconstruct decay chain

Single lepton boosted

- Kinematic constrains to reconstruct $t \rightarrow \ell vb$
- Hadronic top =
 large-*R* trimmed jet

Dilepton Neutrino weighting

- Kinematic constrains to find optimal longitudinal component of the two neutrinos' momenta [Phys. Lett. B, 752 (2016) 18-26]
- Extra jet may also be photon, bb pair

All-hadronic boosted

Top quark candidates
 = 2 leading large-R
 trimmed massive jets
 (*b*- and *top*-tagged)

ft total xs (QCD)

LHCTopWG

Inclusive cross-section in very good agreement with NNLO+NNLL calculations

$\Delta\sigma(exp) \lesssim \Delta\sigma(th)$

Possible deviations still allowed:

- small corners of the phase-space
- differential cross-sections
- associated production

Top Quark p_T

Top Quark p_T

JHEP 10 (2018) 159

- Poorest data/PP6 agreement in ft (ℓv2j2b)+ 0j
- Improved agreement with additional jets

ft invariant mass

- Consistent with QCD prediction, no hint of BSM particles
- All-Hadronic boosted best m^{tt} resolution for mass > 1 TeV

PDF Fit

ATLASepWZtop18:

- NNLO pQCD fit using
 - ATLAS differential cross-sections at 7 TeV (W, Z/γ*) and 8 TeV (ft pT, mt single lepton, ytt dilepton)
 - HERA e[±]p data
- Good fit to data when p_T^t and m^{tt} used separately
 - Pull opposite ways >> decorrelation
 - Effect due to **IFSR** modelling systematic.
 - No significant impact on the shape of gluon PDF
- Impact of top diffxs: harder PDF, reduced high-x gluon uncertainty

Extra radiation

- Additional radiation (esp ISR) test NLO, NNLO calculations
- Very useful for MC tuning

Extra radiation (HF)

- Associated emission of ft + bb heavy flavour complicated process!
- Crucial background to tt+Higgs

Extra radiation (y)

- Top quarks have EM charge, emit light!
- But also quarks in the initial state...
- + Probes compositeness: $t^{\star} \rightarrow t \gamma$

Single top (EWK)

arXiv:1902.07158

t-channel

- Have measured unfolded differential cross-sections
- Some differences in MC modelling as well?

Single top + W/Z

Associated production with W/Z established

- *tW* differential cross-sections
- $tZq @ 4.2\sigma$ evidence (CMS >5 σ , 77 fb⁻¹)

ft+W/Z

Phys. Rev. D 99 (2019) 052009

Total cross-sections

Search for New Physics

"So what else is there?"

$X \rightarrow ft Resonances$

arXiv:1804.10823

X→tb,TZ,tH Resonances

Conclusions

- Production cross-section measurements of increasing precision
 - Confirm Standard Model NLO predictions

•

- ATLAS baseline POWHEG + Pythia8 model in good agreement with data, but underwent significant tuning compared to other generators
- Hard-scattering and parton-shower modelling large source of systematic uncertainty
- Associated production measurements in agreement with theory
- "Tick-tock" approach to reduce modelling systematics works
- No evidence for new physics in top-quark final states, yet!

Top Tagging in a Nutshell

Apply **cut** on **substructure** variable(s) as a function of jet **kinematic** variables (p_T , y, m)

Key variables:

· Mass of the jet

- Measures of internal substructure
- b-tagging of subjets

Results in clean ft samples

> All-hadronic (pt,1>500 GeV, pt,2>350 GeV)

Boosted I+jets (pT,1>350 GeV)

Uncertainties: Top quark pt

Single lepton + jets

- Jet energy scale 5% b-tagging < 5% Background modelling (low pT) 2%
- → Signal modelling (high pT) 5%

Dilepton

Signal modelling >10%
 PDF 5%
 b-tagging < 5%

All-hadronic

- Jet energy scale 5% Top-tagging 10% b-tagging < 10%
- Signal modelling (ps/had) 15%

t-channel

Polarization observables extracted from angular asymmetries

Set limits on anomalous couplings

Extra radiation (HF)

 $\geq 6j, \geq 4b$

 $\Delta R_{b,b}$

- Associated emission of ft + bb heavy flavour complicated process!
- Crucial background to tt+Higgs

tt/tW interference

- Double slit experiment with top quarks!
- Doubly (ft) and singly (tWb) resonant productions have similar final states and thus interfere
- Interference "removed" with
 - "Traditional" methods
 - diagram removal (DR)
 - diagram subtraction (DS))
 - Fully-consistent treatment (POWHEG bb4l)

tt/tW interference

- Double slit experiment with top quarks!
- Doubly (ft) and singly (tWb) resonant productions have similar final states and thus interfere
- Interference "removed" with
 - "Traditional" methods
 - diagram removal (DR)
 - diagram subtraction (DS))
 - Fully-consistent treatment (POWHEG bb4l)

tt/tW interference

- Invariant mass (b, ℓ) characteristic ٠ distribution in presence of resonance
- mbeminimax sensitive to interference effects in the tail
- Uncertainty small enough to ٠ constrain different treatments
 - Resonance-aware treatment in better agreement with data

$$m_{b\ell}^{\text{minimax}} < \sqrt{m_t^2 - m_W^2}$$

 $m_{h\ell}^{\text{minimax}}$

ft+H (or H+ ft?)

- Probes Yukawa coupling (is the top quark the only "natural" quark?)
- Combination of H→bb,WW*,ττ,γγ,ZZ* >5σ

Supersymmetric Scalar Tops

Reclustered R=1.2 jet

heavy stops almost produced at rest, low momentum \rightarrow unusually large jet radius

Signal xs depends on stop and neutralino masses

Set limits using simplified models

Stops from Spin Correlations

arXiv:1903.07570

"Searches never stop"

u,c

FCNC

- Flavour-changing neutral currents strongly suppressed in the SM, but enhanced in some BSM scenarios
- Look for tt \rightarrow WbHq (W \rightarrow qq/ ℓ v,H \rightarrow qγ/bb)

