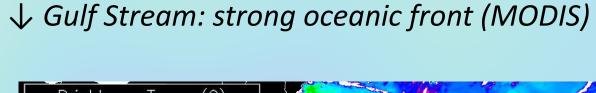
Critical reflection of internal waves off the sea surface

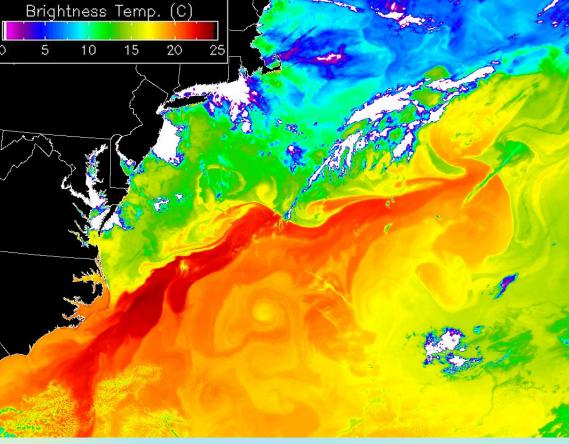
Nicolas Grisouard – Department of Physics, University of Toronto

Leif N. Thomas – Earth Systems Science, Stanford University

1. Motivation

- Mesoscale vortices (~100 km):
- > 90% of the ocean's kinetic energy
- Geostrophic, very robust (inverse) energy cascade)
- Oceanic fronts: horizontal boundaries between water masses (e.g. Gulf Stream), ~10 km wide, featuring:
- strong lateral density gradient, thermal wind shear,
- strong ageostrophic motions, enhanced turbulence,
- strong internal wave activity.



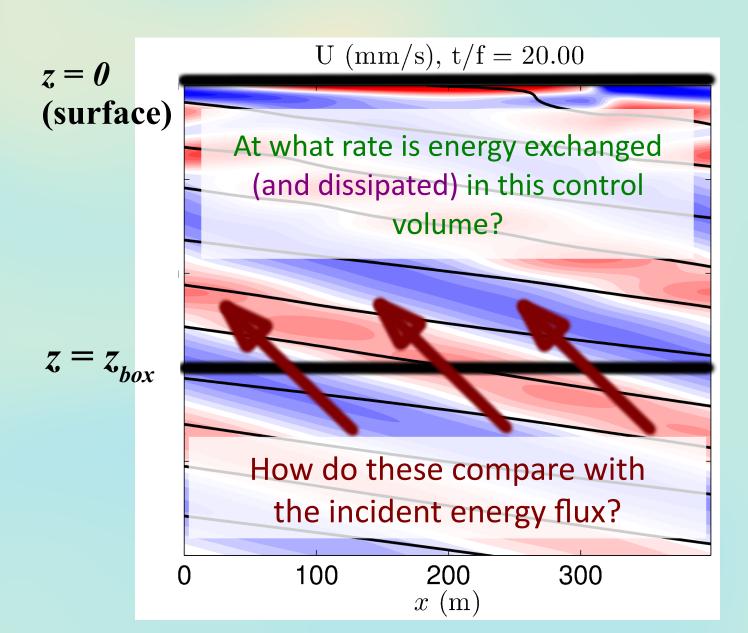


Can internal waves extract

 $\omega = f$: critical reflection

 $\omega < f$: backward reflection





> Oceanic fronts: hotspots for the dissipation of geostrophic energy?

geostrophic energy from fronts?

$\omega > f$: forward reflection **2. Critical, forward and backward** reflections

- ► Lateral buoyancy gradient: $S^2 = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial x}$ > Thermal wind shear with $Ri_G = \frac{f^2 N^2}{s^4}$, No lateral shear (Ro_c=0)
- > Dispersion relationship for internal waves: $m^2\omega^2 = k^2N^2 + m^2f^2 - 2kmS^2$
- > Waves can oscillate at $\omega < |f|$: $\omega_{min} = f \sqrt{1 1/Ri_G}$
- Slope of characteristics:

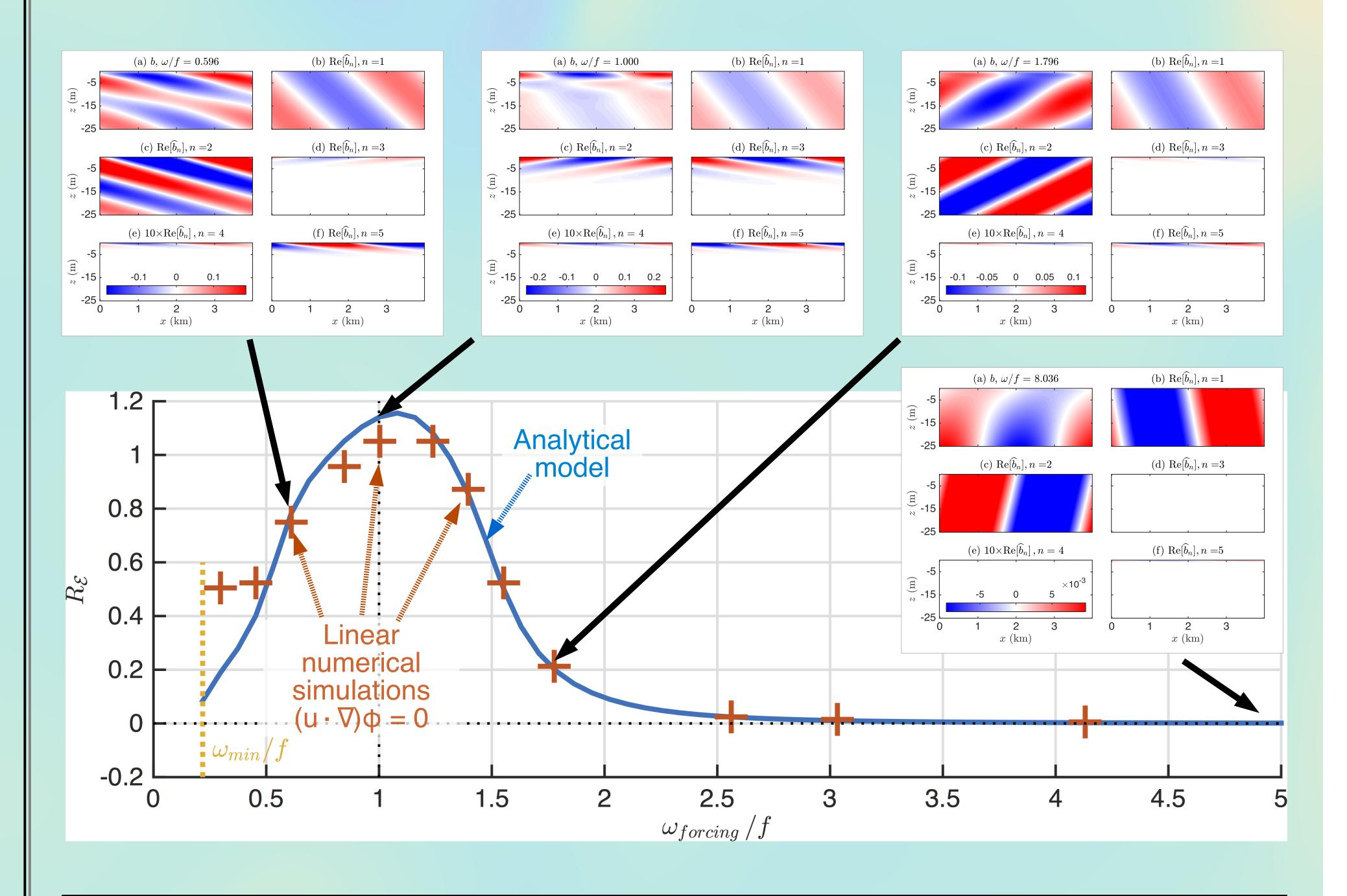
$(k/m)_{+} = S^{2}/N^{2} \pm \sqrt{S^{4}/N^{4}} + (\omega^{2} - f^{2})/N^{2}$

- > For $\omega = f$, critical reflection against the ocean surface: slope = 0.
- Internal waves reflecting off the surface can experience critical reflection for $\omega = f$.
- > Viscous effects?

3. Near-critical linear reflection: theory

Near-inertial waves reflecting off the surface in strong fronts (RiG = O(1)) extract and dissipate a significant amount* of geostrophic energy.

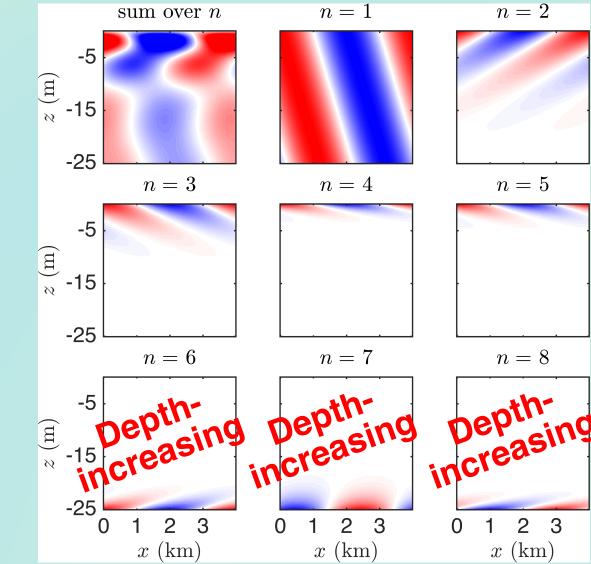
* at a rate of the same order of magnitude as the wave's incident energy flux



In the inviscid case, simple: $\left((f^2 - \omega^2) \partial_z^2 - 2ikS^2 \partial_z - k^2 N^2 \right) \hat{\phi} = 0$ with $\phi = \phi(z) \exp i(k x - \omega t)$, $\phi = u, v, w, b, p, \psi$ or else...

But with viscosity, not so much: $\begin{vmatrix} i \omega + v \partial_z^2 \end{vmatrix} \begin{vmatrix} v^2 \partial_z^6 + 2i v \omega \partial_z^4 + (f^2 - \omega^2) \partial_z^2 - 2ikS^2 \partial_z - k^2 N^2 \end{bmatrix} \hat{\phi} = 0,$ with $\phi = \hat{\phi}(z) \exp i(kx - \omega t)$, $\phi = v$, b or p (but not u, w or ψ). $\tilde{\phi} = e^{rz}$, $r \in \mathbb{C} \Rightarrow$ eigth possible r's, four of them >0 (\Leftrightarrow decay with depth).

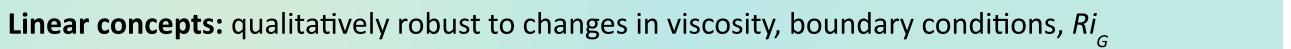
 $\phi = \sum \hat{\phi}_n(x, z, t), \qquad \hat{\phi}_n = \tilde{\phi}_n \exp(r_n z + ikx - i\omega t)$

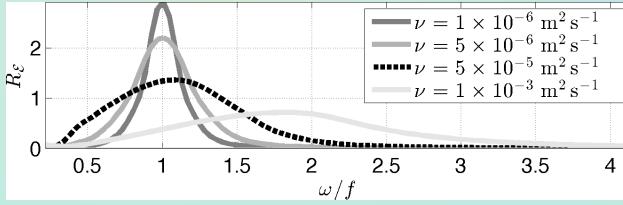


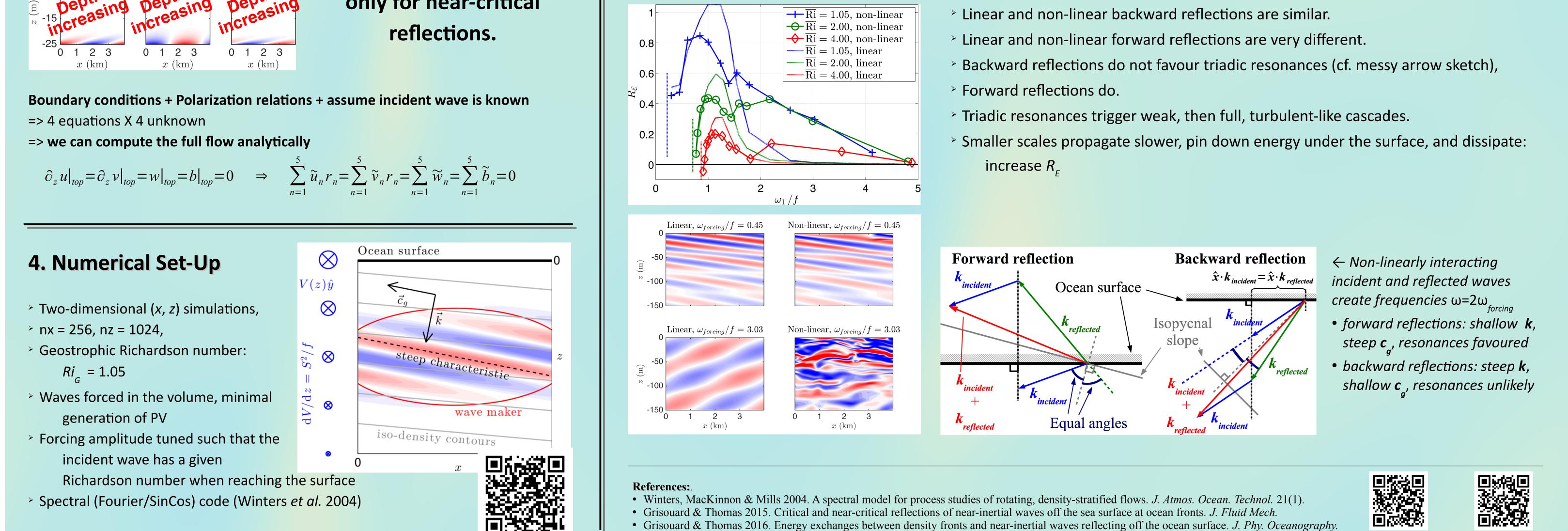
← top left: an example of a near-critical reflection Other panels: exp(ikx + r_pz); n = 1, 6, 7 and 8 increase with depth: *n*=1 is the incident wave, the rest is unphysical.

> **Viscous solutions matter** only for near-critical reflections.

6. How robust is this process?







- ≈ 0.5 $\overline{\mathrm{Ri}} = 4.00$, analytics no-perturbation boundary condition no-flux boundary condition $\frac{3}{2}$ 0.5 2.5 3.5 2 0.5 1.5 2 3 0 4 ω_1/f ω/f

+ $\overline{\text{Ri}} = 1.05$, simulation

 $O \overline{Ri} = 2.00$, simulation

 \Diamond $\overline{\text{Ri}} = 4.00$, simulation

 $\overline{\mathrm{Ri}} = 1.05$, analytics

 $\overline{\text{Ri}} = 2.00$, analytics