Numerical Simulation of a two-dimensional internal wave attractor
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Internal wave attractors may form in stably stratified fluids enclosed in containers that have
non-normal or non-parallel boundaries with respect to gravity (see [3]). Such
configurations could be relevant for astrophysical bodies, some closed areas of the deep ocean
and lakes. The dispersion relation of the internal waves, namely w = N-cos6, relates the
temporal frequency of the waves w to the angle of propagation of the energy with respect to
the direction of gravity 6 in a given medium of Brunt-Vaisala frequency N. This anisotropic
relation leads to a peculiar reflexion property which is responsible for the existence of internal
wave attractors (see fig. 1). Hazewinkel et al. (2008) (HBDMOS8, [2]) recently performed new
el horizontal direction laboratory experiments of a wave attractor. Our purpose is to present the result of a 2D direct
numerical simulation of one of these experiments using the MIT general circulation model.

D Fig. 1: geometrical
focusing of internal
gravity wave beams in a
closed domain with
constant N. Due to the
reflection property at the
sloping wall, rays (red
and blue) are focused
and eventually get close
to a pattern called wave

vertical direction

Numerical Set-Up
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4 Fig. 2: Physical The MITgcm code is used in a two-dimensional non- dx d fial Ut 05
dimensions of hydrostatic, non-linear DNS configuration. The a , < (spa - tion) 1' mgn
i@ LEl spatial scheme is an explicit finite volume method and the . (V|.scos.,|t.y) TS i
temporal scheme is an order 3 Adams-Bashforth method. K (diffusivity) 0.01 mm?/s
The Boussinesq approximation is assumed. N (Brunt-Vaisala frequency) 2.76 rad/s
w (forcing frequency) 1.23 rad/s
Starting from rest, a horizontal oscillating current of T (forcing period) 5.11 s
frequency w is applied at the vertical boundary during U (amplitude of forcing) 7.38 - 10° mm/s
617. The forcing is then relaxed and the field decays. dt (temporal resolution) 0.02044 s, T/250
Boundary conditions Free slip, free surface

Validation of the simulation : comparison with HBDMO08's experiment

x 10 '° Wave number spectrum

The overall behavior of the fluid motions is well reproduced by the
model. First, the attractor grows for approximately 30T, followed by a 6/
stationary phase and finally a decay stage, with a few snapshots displayed
in fig. 3. In the following we focus on the stationary regime. af
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decay stage. Left: output of the simulation; right: laboratory experiments of HBDMOQS8.
byot Top: 2T after the forcing has been turned off: middle: 18T ; bottom: 26T.
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A refined analysis, from the computation of spatial spectra along four wave number k ()
different sections across the attractor (fig. 4), still reveals discrepancies:
the viscous damping seems to be more efficient in the laboratory. The
viscous dissipation at the sidewalls in the laboratory, not taken into
account in our 2D configuration, might be a more powerful sink of energy

than expected.
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Thickness of the attractor Non-linear effects
The width of the attractor A may be assumed to result from a balance between If we now multiply U by 10, non-linearities and harmonics generation become more
focusing and viscous broadening (see [4], [2]). As shown in [1], this |eads to the visible. By temporally filtering the signal during the permanent regime, it is possible to
following expression for A: iIsolate the signal of every frequency, as can be seen in fig. 7. Beams of frequency 2w
AOC( SV | v )1/3 s being the along-branches coordinate, L_the length of the can be seen. On the otherhand, 3w>N so the second harmonic remains locally confined.
L, y’ —1 attractor and y the focusing factor.

a

If y>1, the theoretical prediction by [5] is recovered implying that, in the fluid reference
frame, the attractor can be seen as a beam emitted by the (now oscillating)
inclined wall.
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4 Fig. 6: evolution of A along the branches of the
oL, attractor for two different sets of parameters. Dashed Summary:
145 = - - s comeutec exponent Is 0.23 (Insicegiiii >Successful non-linear, non-hydrostatic numerical reproduction of the
- - Solid line: other set of parameters, the computed _
In(s/L,+1/(°-1)) exponent is 0.42. laboratory experiment of HBDMOS8
~Careful comparison of the two sets of data
Ny e -Theoretical modeling of the width of the attractor, confirmed by the
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