
  

3. Set-Up3. Set-Up

➢Two-dimensional (x, z) simulations,
➢nx = 256, nz = 512 or 1024,
➢∆x = 1.56 m, ∆z = 9.77 cm,
➢N2 = 10-4 s-1, S2 = 9.8 10-7 s-1, f = 10-4 s-1,
➢Geostrophic Richardson: Ri

G
 = f 2N2/S4 = 1.05

➢Background PV : f  2N 2(1-1/Ri
G
)>0,

➢Waves forced in the volume (cf. Figure), minimal 
generation of PV
➢Forcing amplitude tuned such that incident wave has 
Richardson number Ri

1
 when  reaching the surface

➢Free-slip, rigid lids on top & bottom, periodic in x

Equations solved by the code (Winters et al. '04):

2. Critical, forward and backward reflections2. Critical, forward and backward reflections

➢Oceanic fronts characterized by strong lateral density gradients: S2 = -(g/ρ
0
)(dρ/dx)

➢Consequence on internal waves: unusual dispersion relationship: ω2(β) = β2N 2 + f 2 – 2βS 2

➢The slope of wave phase lines are symmetric around the isopycnal slope (if non-hydrostatic): 
β

±
 = (k/m)

±
 = S 2/N 2 ± (S4/N4 + (ω2 – f 2)/N 2)½

➢For ω = f, critical reflection against the ocean surface: β
–
 = 0.

➢Similar to classical internal waves reflecting onto a slope, frontal internal waves 
reflecting onto the ocean surface can experience critical reflection for ω = f.
➢If ω > f: “forward” (sub-critical) reflection; if ω < f: “backward” (super-critical) reflection.
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Isopycnals
u⃗ t + f ẑ×u⃗ + (S 2/ f )w ŷ − b ẑ + ϵ [(∇⃗×u⃗ )×u⃗ ] + ∇⃗ P = D u⃗ ,

bt + S 2 u + N 2 w + ϵ u⃗⋅⃗∇ b = D b , u x + wz = 0, ϵ = 0 or 1

u⃗ + V ( z) ŷ = (u , v + S 2 z / f , w)
D = νz∂ zz − νh∂ xxxx , νz = 2 mm2/s .

1. Introduction1. Introduction

Context:
➢ Oceanic fronts: horizontal boundaries between water masses (e.g. 

Gulf Stream separating sub-polar from sub-tropical waters)
➢ Oceanic fronts characterized by:

* strong lateral density gradient, thermal wind shear,
* strong ageostrophic, vertical motions, enhanced turbulence,
* strong internal wave activity.

➢ Understanding frontal mixing: crucial to understand air-sea 
exchanges => climate modeling, biology…

Internal waves in fronts:
➢ Peculiar properties due to slanted isopycnals (Whitt & Thomas 

2013),
➢ Can “classical” (flat isopycnals) internal wave physics give 

insight about “frontal” internal wave physics?

How are the reflection properties of internal waves 
modified by the presence of an oceanic front?

4. Linear reflections4. Linear reflections

Forward reflection (ω > f )

Unsurprising result: reflection along characteristics, viscous decay.

Backward reflection (ω < f )

No backward reflection! Wave entirely absorbed under the surface.

Critical reflection (ω = f ):

Horizontal velocity field (u, mm/s):

Structure of subsurface flow governed by:

↑ (a) Dashed lines, diamonds, circles and stars: wavelengths of the set of 
three r's, whose real parts decay with depth normalized by 1/μ, for 
different μ (νz). Solid line, crosses: wavelength of the boundary layer flow, 
measured as in (b). (b): envelope of the boundary layer, visible in the 
horizontal velocity field. Horizontal lines: measured depth of the local 
maximum (solid) and predicted half-wavelength of two of the r's (dashed).

Linear critical reflection: wave absorbed under the surface, 
within a boundary layer well described by viscous theory. 

5. Non-linear, critical reflection5. Non-linear, critical reflection ( (ωω
forcingforcing

 =  = f f )) 6. Non-linear, non-critical reflections (6. Non-linear, non-critical reflections (ωω
forcingforcing

 ≠  ≠ f f ))

ψ6z + 2 iμ2 ψ4z − 2 i k 1
2μ2 ψzz −

2ik1μ
4 S 4

f 2
ψz −

k 1
2μ4 N 2

f 2
ψ = 0,

with ψ=ψ̃( z)exp i (k 1 x− ft ) , (u , w)=(−ψz ,ψx) , μ2= f /νz.

Made possible because ω≡ f  and k≡k incident  for linear reflections.

ψ̃=erz , r∈ℂ ⇒ six possible r 's, three of them >0 ( ⇔  decay with depth).
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Wave forcing
Isopycnals

← Background reflection (ω
forcing

 < f ): 

(a) snapshot of u (mm/s). Dashed line: 
forcing envelope. Solid lines: isopycnals.
(b) snapshot of (∫udx)/L (mm/s).

No apparent reflected wave.

Forward reflection (ω
forcing

 > f ): 

→ Snapshot of w (mm/s). Dashed line: 
forcing envelope. Solid lines: isopycnals.

↓ Downward-propagating oscillations at 
(left) ω = ω

forcing
  and (right) ω = 2ω

forcing
.

Reflections and strong generation of 
harmonics

β−

β−

β−

β−

β−
β−

β−

A tale of two reflections:
dull backward reflection, spectacular

forward reflection. Why?

Non-linear interactions between incident
and reflected waves tend to force:
∘ frequencies ω=2ω forcing

∘ shallower k⃗ , steeper c⃗g  for forward
reflections: triadic resonances favored

∘ steeper k⃗ , shallower c⃗g  for backward
reflections: triadic resonances unlikely

7. Energetics7. Energetics

Ratio, averaged over x and time, of:
1. Kinetic energy dissipation in the top 15 m, over
2. Incident kinetic energy flux (Pw) at z = –15 m.

➢ Forward reflections → deep energy propagation,
➢ Around ω = f: more energy is dissipated that is 

supplied by the incident wave! 
➢ Geostrophic flow supplies energy to the 

ageostrophic flow.

Reflecting near-f waves can potentially drain energy out of fronts 
(in the absence of surface forcing)

Absent in classical reflections, this effect is a genuine feature of the frontal case!

Snapshots: 
(a) u (mm/s). Solid: 
isopycnals.  Dashed: wave 
forcing position. 
(b) ∫udx/L (mm/s). 
(c) w (mm/s). Lines: passive 
tracer contours.

Non-linear flow active 
well below the surface.

Downward-propagating 
oscillations filtered at (a) ω = 
f  and (b) ω = 2f. 
● Harmonics are present, but 

do not align with β
–

=> forced motions, not 
freely propagating waves 

(even for ω > f )

Transition to turbulence: 
normalized frequency spectra 
of u for  Ri

1
=3 (black), Ri

1
=1 

(dark) and Ri
1
=0.3 (light)

Increased amplitude => stable 
harmonics disappear, flow 
becomes turbulent. Well-
known in the classical case. 

8. Conclusions8. Conclusions

➢ In fronts, inertial waves experience critical reflections against the ocean surface,
➢ Linear reflection properties are governed by viscous theory, although more complicated than 

mere Ekman layer dynamics.
➢ Non-linear, critical reflection: ageostrophic energy present well below the surface. This flow is 

entirely forced, no radiation of freely-propagating waves.
➢ Non-linear, backward reflection: wave absorbed under the surface, no apparent reflection.
➢ Non-linear, forward reflection: wave reflects, non-linear interactions happen, reflections and  

harmonics propagate energy deep down.
➢ Reflecting near-f waves can potentially drain energy out of fronts, in the absence of surface 

forcing.

➢ Multiple avenues for transfer of knowledge from classical internal wave 
science to frontal and sub-mesoscale dynamics: 3D effects, wave-mean flow 
interactions, turbulence and mixing…

Local extrema of (∫udx)/L for Ri
1
=10 (black) and Ri

1
 = 

100 (gray), for νz = 2 mm2/s (circles) and νz = 4 mm2/s 
(crosses).

➢ Top 2.5 m: strong decay of the sub-surface flow, 
sensitive to amplitude, less so to viscosity.

➢ Below z = –2.5 m: smaller decay of the sub-surface 
flow, sensitive to viscosity, less so to amplitude.

Link with the linear theory: unclear at this point…
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