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1. Introduction

2. Critical, forward and backward reflections

3. Set-Up

Context: -Oceanic fronts characterized by strong lateral density gradients: S* = -(g/po)(d;/dx) ~Two-dimensional (x, z) simulations, ® Ocean surface 0
> Oceanic fronts: horizontal boundaries between water masses (e.g. . . . . . : T VU AP ) ‘nx =256, nz =512 or 1024,
Gulf Stream separating sub-polar from sub-tropical waters) Consequence on internal waves: unusual d1§pers10n relatl‘onshlp. o(P) = B N-+f°-2BS | Ax=1.56 m. A== 9.77 em. V(2)g
» Oceanic fronts characterized by: ~The slope of wave phase lines are symmetric around the 1sopycnal slope (if non-hydrostatic): A 10t e 208107 ¢! fe 104 <]
. : . _ — SN2 + (SYN* + 2_2/N2)1/2 — S, = . S,f— S, ® —— =~
* strong lateral density gradient, thermal wind shear, B, =(kim) =S7/N” +( (@ —f7) G L Richardson: Ri = FN/S = 105 ~—
* strong ageostrophic, vertical motions, enhanced turbulence, .For ® = £, critical reflection against the ocean surface: B = 0. »Geostrophic Kichardson: £i, =/ o N
* strong internal wave activity. o o . - . -Background PV : f°N°(1-1 /Ric;)>0’ P \
» Understanding frontal mixing: crucial to understand air-sea ~Similar to classical internal waves retlecting onto a slope, frontal internal waves W corced in the vol - N S X . T L ¥
h — ol deline. biol reflecting onto the ocean surface can experience critical reflection for o = f. aves forced in the volume (cf. Figure), minima . 0 4
exchanges => climate modeling, biology... . fp [ 2 fored 5
If © > £ “forward” (sub-critical) reflection; if ® < f: “backward” (super-critical) reflection. generation of PV o x ~ _ Wave IoTCIIZNL
. < | oS — = - -
Internal waves in fronts: >Eo£c1ri1g amphtu;le tur.led EUCh thath 1.nc1d§nt wafve has = ® Isopycnals
- Peculiar properties due to slanted 1sopycnals (Whitt & Thomas w < f: backward reflection w = f: critical reflection w > f: forward reflection Richardson number Ki, when reaching the surface ©
2013), RS T T SGEG T e fe s D> et et ~Free-slip, rigid lids on top & bottom, periodic in x
» Can “classical” (flat isopycnals) internal wave physics give RONIRNRRED STED et N . LETLET ® _H
insight about “frontal” internal wave physics? Iso yc\’ = S aEeta Equations solved by the code (Winters et al. '04): 0 N .
ajs o v e
How are the reflection properties of internal waves ASSARAS ‘\‘\‘\ - AP B ﬁt+f2><ﬁ+(52/f)wy—b2+e[(V><a)><ﬁ]+VP: D1, i+ V(zZ)p=(u, v+ S°zIf, w)
. . 9 .~ * ¢ —> z z
modified by the presence of an oceanic front’ b +Su+Nw+ci-Vb=Db, u +w.=0, e¢=0or D=v0o.—v'o. ., vi=2mmYs.
4. Linear reflections 5. Non-linear, critical reflection (@ = f) 6. Non-linear, non-critical reflections (o 1)
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Unsurprising result: reflection along characteristics, viscous decay. Forward reflection (mforcing > 1) 0 —— e 0.1
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Critical reflection (0 =f): z (m)
(©=1) > Top 2.5 m: strong decay of the sub-surface flow,
Horizontal velocity field (x, mm/s): sensitive to amplitude, less so to viscosity.
i q q q > Below z =—2.5 m: smaller decay of the sub-surface A tale of two reflections:
lgp ward+downwar |Upwar |Downwar flow, sensitive to viscosity, less so to amplitude. dull backward reflection, spectacular Forward reflection Backward reflection
» fOI'WElI'd I'eﬂGCtIOIl. Why? k . ’%.kincident:'%.kreﬂected
incident Ocean surface — ———
Link with the linear theory: unclear at this point... . . . o -+ —
FEL e N SIS Non-linear interactions between incident k Isonvenal k. ..
S P- and reflected waves tend to force: \\ reflectet sll)gpe
\ -2- 0 -2 o frequencies W=2 ;.. ~N Q / \ \
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with Y=(z)expi(k,x—ft), (u,w)=(=y.,p,), w=fIv’

Made possible because w= f and k=k for linear reflections.

incident

P=e"”, r€C = six possible r's, three of them >0 ( < decay with depth).
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7 (a) Dashed lines, diamonds, circles and stars: wavelengths of the set of
three r's, whose real parts decay with depth normalized by 1/u, for
different ¢ (v*). Solid line, crosses: wavelength of the boundary layer flow,
measured as 1n (b). (b): envelope of the boundary layer, visible in the
horizontal velocity field. Horizontal lines: measured depth of the local
maximum (solid) and predicted half-wavelength of two of the #'s (dashed).

Linear critical reflection: wave absorbed under the surface,
within a boundary layer well described by viscous theory.

Increased amplitude => stable
; - = - - - -,  harmonics disappear, flow

w/f becomes turbulent. Well-
known 1n the classical case.

3. Conclusions

7. Energetics

2
Ratio, averaged over x and time, of: +!|'|"*.|,'
1. Kinetic energy dissipation in the top 15 m, over 1.5 + = ‘k
2. Incident kinetic energy flux (Pw) atz=—15 m. = "‘
1 -||||||||H||||IIIItEIIII|||||IIIHIIIIIlIIm‘IIIII|||||<||||k|||||<|||||||||||||H||||||||—|
~ Forward reflections — deep energy propagation, z "',
> Around o = f: more energy 1s dissipated that 1s 0.5/ = '1".,"
supplied by the incident wave! - e,
> Geostrophic flow supplies energy to the 00 1 5 3 Z'-
ageostrophic flow. w/f

Reflecting near-f waves can potentially drain energy out of fronts
(in the absence of surface forcing)

Absent 1n classical reflections, this effect is a genuine feature of the frontal case!

~ In fronts, inertial waves experience critical reflections against the ocean surface,

~ Linear reflection properties are governed by viscous theory, although more complicated than
mere Ekman layer dynamics.

> Non-linear, critical reflection: ageostrophic energy present well below the surface. This flow 1s
entirely forced, no radiation of freely-propagating waves.

> Non-linear, backward reflection: wave absorbed under the surface, no apparent reflection.

> Non-linear, forward reflection: wave reflects, non-linear interactions happen, reflections and
harmonics propagate energy deep down.

» Reflecting near-f waves can potentially drain energy out of fronts, in the absence of surface
forcing.

> Multiple avenues for transfer of knowledge from classical internal wave
science to frontal and sub-mesoscale dynamics: 3D effects, wave-mean tlow
interactions, turbulence and mixing...
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