
  

Oceanic Oceanic Mean Flows Forced by Dissipating Topographic Internal WavesMean Flows Forced by Dissipating Topographic Internal Waves

No mean flow can be forced resonantly in a vertical 2D configuration.
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Physical and Mathematical Set-upPhysical and Mathematical Set-up
➢Rotating ocean: depth H=4 km, Coriolis frequency f = 10-4 s-1 (45º), constant buoyancy frequency N = 10-3 s-1

➢Topography at z = h(r), max. elevation h
0
=100 m, horizontal scale L=10 km

➢Elliptic barotropic tide U(t): amplitude U
0
=1.4 cm/s, frequency ω=1.4×10-4 s-1 (M

2
)

➢ Internal waves slope:

ϵ=
U 0

ω L
≪1 ⇒ ∀ϕ=O(a) , ϕ(r , z , t)=ℜ [ ϕ̃(r , z)e−iω t ]

a=
h0

μ L
≪1

Small tidal Small tidal 
excursion:excursion:

● Bottom BC applied at z = 0 (≠ h(r)) 
● Asymptotic ordering of solutions:
O(1) : barotropic tide
O(a) : linear IWs radiated by topography
O(a2) : mean flow generated by linear IWs

μ=√(ω2− f 2)/(N 2−ω2)≈0.1

OO((aa): Linear Internal Waves): Linear Internal Waves

➢ Boussinesq equationsBoussinesq equations in the tidal reference frame
➢Radiative damping (simple + conserves momentum)
➢Vertical BCs: no-normal flow with weak topography 
➢All horizontal fluxes are outward + decay at infinity

∇⋅u = 0,
∂t u + (u⋅∇)u + f ẑ × u =−∇ p + b ẑ ,

∂t b + (u⋅∇)b + N 2 w =−α b ,
w∣z=0=(U+u)⋅∇ h h (r ) , w∣z=H=0.

MotivationMotivation
➢ Internal waves (IWs) in the ocean: important for the large-scale circulation AND too small for GCMs.
➢Classical IW effect on atmospheric mean (i.e. zonal) flows:

a zonal mean flow “pushes” a mountain → internal (lee) waves → dissipation → drag on mean flow... 
… an action-reaction pair, except reaction is felt by the mean flow where waves are dissipated!reaction is felt by the mean flow where waves are dissipated!

➢Why is atmospheric knowledge so hard to apply to the ocean? Because absence of zonal symmetryabsence of zonal symmetry 
and random forcingrandom forcing imply that (i) processes are 3D in nature processes are 3D in nature and (ii) a new average has to be used.

➢We focus on the most energetic component of the IW forcing spectrum: the semi-diurnal tide. 

Weak topography:Weak topography:

➢Equations to solve: equation for the vertical velocity + vertical BCs:

➢We look for a Green's function whose point source is on the bottomGreen's function whose point source is on the bottom:

➢Possible candidate:

➢Each Gm is the solution of a forced 2D Helmholtz equationforced 2D Helmholtz equation; with the outward radiation condition, its Green's function 
(“Green's function of the Green's function”) is known:

➢Convolving gm(r
0
;r') with –2δ(r – r

0
)/(mπ) gives the Gms, which give G; convolving G with the bottom BC finally gives: 

∇h
2 w̃+(μβ)2∂zz w̃=0, w̃∣z=H=0, w̃∣z=0=Ũ⋅∇ h h(r ) , β2= fct (α , N ,ω) ∈ ℂ , β=1 if α=0 .

∇h
2 G+(μβ)2∂zz G=0, G∣z=H=0, G∣z=0=δ(r−r0).

G (r , z ; r0)=∑m∈ℕ
Gm(r ; r0)sin (mπ z /H ) + (1− z /H )δ(r−r0) ,

∇h
2 Gm+(μβmπ/H )2 Gm =−2δ(r−r0)/(mπ) , Gm∣z=H = Gm∣z=0 = 0

g m(r0 ; r ' )=−(i /4)H 0
(1)(μβmπ∣r '−r0∣/H ) (H 0

(1)=J 0+iY 0)

w̃(r , z)=
(μβ)2π
2 iH 2 ∑

m=1

∞

Cm(r )sin (mπ z
H ) + [1− z

H
+∑

m=1

∞
1
m

sin (mπ z
H )] w̃∣z=0(r ) ,

with C m(r)=∬ℝ2 m H 0
(1)(μβmπ∣r−r0∣/H ) w̃∣z=0(r0)d

2 r0 .

OO((aa22): Mean Flow Forcing): Mean Flow Forcing
➢We average over fast time scalesaverage over fast time scales (say ω-1) and let the mean flow evolve slowly.
➢The linear Boussinesq operator accepts one ω=0, balanced mode which (i) does not appear at O(a) but can be 

forced at O(a2) and (ii) is the only mode captured by the fast time average. Can the Can the OO((aa22) balanced mode be ) balanced mode be 
forced resonantly by the forced resonantly by the OO((aa) IWs?) IWs?

➢We choose to use the Generalized Lagrangian-Mean Generalized Lagrangian-Mean 
(GLM) theory(GLM) theory, hybrid between Eulerian and 
Lagrangian:

➢GLM equations in vorticity form, taking into account ∂
t
wave quantities = 0 for our steady fields:

➢Lagrangian-mean potential vorticity evolution equation:

➢ Is this forcing weak or strong? Is this forcing weak or strong? (i.e. steady state at O(a2) vs. resonant growth) 
(i) If one enforces ∂

t
 = ∂

y
 = 0 in the GLM equations, one finds out that the forcing is weak:

(ii) From the PV equation: a mean flow can grow resonantly in 3D if αLf/N2→ 0    ...
 

∀ϕ , ϕξ( x , t ) =def ϕ(x+ξ(x , t) , t ) ,

ϕξ = ϕL+ϕl , where ϕL =def ϕξ and therefore ϕl=0.

∇ ⋅ uL = 0,
∂t (∇×uL) − f ∂z uL − ∇×(bL ẑ ) = ∇×F ,

∂t b
L + N 2 wL =−αL bL , 0⩽αL⩽α

mean flow might not 
be dissipated as 
much as the waves!

u = (u,v,w): velocity departure from the basic tide
b = -gρ'/ρ

0
: buoyancy p: scaled pressure

∂QL

∂ t
+ αL f

N 2 ∂ z bL = (∇×F )⋅ẑ ,

F = α N 2

2(α2+ω2)ω
ℑ(w̃∗∇ w̃)

… and if not,∫(∇×F )⋅ẑ d z =− f ( wL∣z=H−wL∣z=0) is not obviously true anyway!

Mean PV forcing: Numerical Calculations Mean PV forcing: Numerical Calculations 
➢Gaussian bump, γ = 0: waves emitted in two opposite directions ⇒ F in two opposite directions, aligned with the tide 
⇒ (∇×F)⋅ẑ quadrupolar quadrupolar (no net force acting on the mountain, nor on the fluid).
With α-1=O(week), spin-up time of the balanced flow is O(years).

➢Gaussian bump, γ = 0.7: quadrupolar pattern vanishes and a topography-trapped vortex takes overquadrupolar pattern vanishes and a topography-trapped vortex takes over, 
counterclockwise for γ > 0. Max. amplitude of (∇×F)⋅ẑ: 13 times stronger than for γ = 0.

➢Gaussian annulus topography,
γ = 0.7: IWs focus high above the
 topography, where the PV forcing 
is strongest. This situation could 
happen above flat-top seamounts.

Left: contours of 
the O(a) vertical 
velocity field. Black 
arrow: direction of 
the tide; circles: 
mountain.
Middle and right: 
contours of 
(∇×F)⋅ẑ; red 
arrows mark the 
direction of F.

Left: contours of (∇×F)⋅ẑ.
Right: same as left, viewed from the side. 

➢ In an all-small parameter regime, we derived a 3D internal tide radiation model that picks up the BCs properly.
➢We computed the effective force due to the dissipating waves, acting on the Lagrangian-mean, balanced flow, 

and noticed that only 3D configurations can generate significant mean flows.
➢ In the case of a rectilinear tide, the effective force acts in two opposite directions, aligned with the tide, 

corresponding to a quadrupolar pattern for the PV forcing. In the case of an elliptic tide, topography-trapped 
vortices are forced, whose rotational directions depend on the one of the tide.

➢Perspectives: (i) implement Laplacian (or any other momentum-conserving) dissipation operator, (ii) release the 
smallness assumptions in order to investigate realistic settings (Guyots, steep ridges...), (iii) investigate the long-
term behavior of the PV via numerical simulations...

Conclusions and Perspectives Conclusions and Perspectives 

Same as above for 
γ = 0.7.
Black ellipse: aspect 
ratio and rotational
direction of the tide

NSF/OCE 
1024180 

NSF/DMS 
1009213

Grisouard, N. & Bühler, O. Forcing of oceanic mean flows by dissipating internal waves, Grisouard, N. & Bühler, O. Forcing of oceanic mean flows by dissipating internal waves, submitted to J. Fluid Mech.submitted to J. Fluid Mech.
Bühler, O. & Muller, C. J. (2007) Instability and focusing of internal tides in the deep ocean. J. Fluid Mech. 588, 1–28.
Bühler, O. (2009) Waves and Mean Flows. Cambridge: Cambridge University Press.
Kunze, E. & Toole, J. M. (1997) Tidally Driven Vorticity, Diurnal Shear, and Turbulence atop Fieberling Seamount. J. Phys. Oceanogr. 27, 2663–2693.
Llewellyn Smith, S. G. & Young, W. R. (2002) Conversion of the Barotropic Tide. J. Phys. Oceanogr. 32, 1554–1566.
Maas, L. R. M. & Zimmerman, J. T. F. 1989 Tide-topography interactions in a stratified shelf sea I & II. Geophys. Astrophys. Fluid Dyn. 45, 1–69.

Can dissipating internal waves radiated from the tide-topography interactionCan dissipating internal waves radiated from the tide-topography interaction
force significant mean flows?force significant mean flows?
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