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1. Introduction

Can internal waves extract

~ Mesoscale vortices (~100 km): geostrophic energy from fronts?
* contain 90% of the ocean's \_ y,

kinetic energy

| The Gulf Stream, a strong oceanic front (Sea

E S
| SHEREEOSI ) iy, ity Ll g surface temperature, MODIS, 25 May 2007)
dissipate (inverse energy cascade) - _ /. ) i

> Oceanic fronts: horizontal Isms " Smls%. W ek sﬁ*‘ Z;

boundaries between water masses —— L me T o SR
(e.g. Gulf Stream separating sub-
polar from sub-tropical waters),
~10 km wide, characterized by:

* strong lateral density gradient,
thermal wind shear,

* strong ageostrophic, vertical
motions, enhanced turbulence,

* strong internal wave activity.

> Oceanic fronts: hotspots for the
dissipation of geostrophic energy?

2. Critical, Forward and Backward Reflections

- Our oceanic front: strong lateral density gradient: S ° = -(g/po)(d,g/dx) (and a thermal
wind shear with Ri_ = f*N?*/§*) and no lateral shear (¥ Dan Whitt's poster nearby)

> Unusual dispersion relationship for internal waves: m?w? = K’N* + m*f* - 2kmS”
- Waves can oscillate at o < |f|: o .= f+1—1/Ri,

> The slope of wave phase lines are symmetric around the isopycnal slope:
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> For o = f, critical reflection against the ocean surface: slope = 0.

> Similar to classical internal waves reflecting off a slope, frontal internal waves
reflecting oftf the ocean surface can experience critical reflection for ® = f.

w > f: forward reflection w = f: critical reflection w < f: backward reflection
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~ However, viscosity 1s about to change this picture drastically...

3. Near-critical Linear Reflection: Theory

In the inviscid case, simple: ((fz—uf)aﬁ — 2ikS’0, — kzNz)cAp:O
with o=§(z)expilkx—wt), o =u,v,w,b, p,p orelse...
But with viscosity, not so much:

vt +2ivwo,: + (fz—u)z)ai — 2ikS*8, — kzNzchp = 0,

. 2
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with o=¢(z)expi(kx—wt), o=v, b or p (butnot u, w or }).
Made possible because w=w and k=k, for linear reflections.

incident incident

p=e¢"~, reC = eigth possible r's, four of them >0 ( & decay with depth).
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0=2.0,(x,2,1), §,=F,exp(r,z+ike—iw)

n=1
sum over n n=1 n =
B -
= " 7 j «— top left: an example of a near-critical
W 15 reflection ()
o8 Other panels. exp(ikx + r z),
_n=s n=> Fourr (n=1, 6, 7 and 8) increase with
- > depth: n=1 is the incident wave, the rest
~ -15 is unphysical for a surface reflection.
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Thanks to the polarization relations, we have four equations and four unknowns (if we
assume the incident wave 1s known)

=> we can compute the full flow analytically

4. Numerical Set-Up

® Ocean surface

0 i . i i ?
Isopycnals > Free-slip, rigid lids on top & bottom, constant density on top & bottom, 6' HOW rObUSt IS th IS process '
> Two-dimensional (x, z) simulations, periodic 1n x
> nx = 256, nz = 1024, or 2048 or 2096, > Equations solved by the code (Winters, MacKinnon & Mills 2004): l —_—
> Ax =15.6 m, Az =48.8 cm, . y . i ek T S o
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ety : S Tl Wave maker L ou+o,w=0. fronts)
» Background PV : f“N*(1-1/Ri )>0, PN S et
; . .. : S e e . A 2 => There is relatively less energy extraction in weak o— Sg
> Waves forced 1n the volume (cf. Figure), minimal generation of PV e el i+ V(z)y=(u,v+SzIf, w) fronts (high Ri ) |
> Forcing amplitude tuned such that the incident wave has a given D=vo_—Vv"d! G 0 1 2 o 3 4 5
Rich h hing the surf ® —H . . o . i
e e e the surtace 0 . L v": keeps the code stable, no influence on the dynamics. Computation of R .in linear numerical simulations and analytical model for various Ri 1
_ 6.2 Sensitivity to the viscosity (analytical study) 6.3 Sensitivity to the boundary condition
5. Energy Extraction l for b (analytical study)
a) b, w/f=0. eAn,n: a)b, w/f=1. eAn,n: a)b, w/f=1. eAn,n: N - ' ' l ' l
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We compute the following two ratios:
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Exchange ratio: R =

Z:Zbox
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Dissipation ratio: R ,=

Z:Zbox

Dissipation ratio

See below: the dissipation ratio is higher than one!

Here, for near-inertial waves:

(Energy dissipation) = 2X (energy brought by the waves)

= (Geostrophic energy reservoir is tapped, and dissipated
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6.4 Sensitivity to non-linear effects (numerical study)

Analytical ) i E% — ;:88’ Eggﬁggi > Linear and non-linear backward reflections are similar.
model 0.8l ~-Ri = 4,0(): non-linear || > Linear and non-linear forward reflections are very different.
I  F U e A A S Ri = 1.05, linear » Backward reflections do not favor triadic resonances (cf.
2 0.6 : . % _ 2288’ ﬁggii _ explanation below), while forward reflections do.
3 . . “ | > Triadic resonances trigger weak, then full, turbulent cascades.
(£) Re[bn),n =5 B 04 (;‘.ae S 1, Higher frequencies propagate faster vertically: reduce R,
..... N

> Smaller scales propagate slower, pin down energy under the

| - 02 | B &G\ ™. * : o :
B | 2N surface, and dissipate: increase R,
0 1 2 3 O: NGO, V
0, N7 J:»
|
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q),

. Net effect: increase of R for forward retlections.
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. . -50 |
surface 1n strong fronts (Ri . = O(1)) g . . .
G « 100l Non-linearly interacting incident and reflected waves create:
extract and dissipate a significant amount - © ITequencies O=20 .y,
. -150 - : - - - - o - , -
of geostrophlc energy. R ] (§m> 3 R ] (im) 3 forward reflections: shallow _}k, steep ¢, , resonances favored
] o backward reflections: steep &, shallow ¢ .» resonances unlikely
tVorticity u-w_in four numerical simulations
* at a rate of the same order of ]
magnitude as the wave's energy flux
Al 4 —1 _ 7. Conclusions
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If %, q(z) = S| 51+ ”f Llexp(r +7 q)z, . I > In fronts, inertial waves (o = f) experience critical reflections against the ocean surface.
by : : 31 — > Linear, viscous theory predicts that eight solutions are allowed instead of two 1n the inviscid theory.
then S2 < “1?2 + VW> _ 13 3 Real Xong (2) = %org (0) a5l =erei20 ~ In a linear retlection, the full flow can be analytically predicted thanks to the boundary conditions.
N° 2 n=1g=] - Lty muuu134 » For a strong front (Ri_, = O(1)), the energy extracted 1s of the same order as the incident wave energy tlux.
-4 + - 35 : : : : : : :
o : 44 > Viscous effects and the interaction of wave modes are ultimately responsible for the irreversible energy exchange.
The energy exchanges are the result of several contributions. 15 . m=unn145 . Th lidated by [ o1 simulati
We break down these exchanges solution-by-solution: 4.0 — -ggm I'hese statements are vali aFe y .mear numerical Simu atlpns. g .
1 s - | , | 1 | ~ The process 1s weaker for higher Richardson numbers, and 1s only moderately sensitive to boundary conditions for
EX ”‘1(2)25 g (2) (18 ) Ao (2) -1000 0 100 200 300 400 500 600 700 the buoyancy anomaly and to viscosity.
/ > Non-linear effects do (not) induce qualitative changes for forward (backward) reflections.
Avoids double-counts T Exchange terms due to the interactions of the n" and g™

No single contribution dominates the interactions.
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solutions (n and q are given in the legend)
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