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ABSTRACT

Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, which are prone

to inertial and/or symmetric instabilities. We argue in this article that drainage of potential energy from

the geostrophic flow is a significant source of their growth. We illustrate our point with two-dimensional

Boussinesq numerical simulations of oceanic density fronts on the f plane. A set of two-dimensional initial

conditions covers the submesoscale portion of a three-dimensional parameter space consisting of the

Richardson and Rossby numbers and a measure of stratification or latitude. Because we let the lateral density

gradient decay with depth, the parameter space map is nontrivial, excluding low-Rossby, low-Richardson

combinations. Dissipation and the presence of boundaries select a growing mode of inertial–symmetric

instability consisting of flow cells that disturb isopycnal contours. Systematically, these isopycnal displace-

ments correspond to a drainage of potential energy from the geostrophic fronts to the ageostrophic pertur-

bations. In the majority of our experiments, this energy drainage is at least as important as the drainage of

kinetic energy from the front. Various constraints, some physical, some numerical, make the energetics in our

experiments more related to inertial rather than symmetric instabilities. Our results depend very weakly on

the Richardson number and more on the Rossby number and relative stratification.

1. Introduction

Oceanic density fronts are defined by horizontal

density gradients that are relatively strong over a rela-

tively narrow region of the ocean surface. Here, we fo-

cus on fronts that are in geostrophic balance and that

decay with depth from the ocean surface. Thermal wind

balance implies that a vertical gradient in geostrophic

velocity exists within the front. Integrating this shear

from depth where currents are weak results in a surface-

intensified jet along the front (Hoskins 1975).

A front is said to be submesoscale if its Rossby and

Richardson numbers are both of order one; that is,

respectively,

Ro5
›
x
y

f
5O(1) and Ri5

N2

j›
z
yj2 5O(1) , (1)

where y is the geostrophic jet velocity, assumed to flow

along the y direction, x is the across-front direction, and z

is the vertical direction, oriented positively upward. The

Coriolis frequency is f, equal to twice Earth’s angular

velocity multiplied by the sine of the local latitude

(assumed constant in this study). The buoyancy fre-

quency is N5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(g/r0)›zr

p
, g is the gravitational accel-

eration, and r0 is a reference density, equal to

1025kgm23 in the rest of this article. Finally, r is the

unperturbed density field in thermal wind balance with y.

Note that the definition of N implies that we use the

Boussinesq approximation, which holds well for such

flows, and that the Rossby number is allowed to take

negative values. At midlatitudes, Ro and Ri being of

order one translates into submesoscale fronts that are on

the order of 1 to 10km wide and a few meters to tens of

meters deep.

Submesoscale fronts host processes that intensely dis-

sipate kinetic energy (KE) (Capet et al. 2008;Molemaker

et al. 2010; D’Asaro et al. 2011; Whitt and Thomas 2015;

Grisouard and Thomas 2016), whichmay be significant in

closing of the KE budget of the oceans (e.g., Ferrari and

Wunsch 2009; McWilliams 2016). This is partially due to

their susceptibility to instabilities (Boccaletti et al. 2007;
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Ménesguen et al. 2012; Wang et al. 2014; Arobone and

Sarkar 2015) and, in particular, inertial and symmetric

instabilities (InI and SI, respectively) (Stone 1966;

Cushman-Roisin and Beckers 2011). InI and SI occur in

the oceanic mixed layer (Haine andMarshall 1998; Taylor

and Ferrari 2009; Thomas et al. 2013) and at low latitudes

(e.g., Dunkerton 1981; Griffiths 2003a,b; D’Orgeville and

Hua 2005; Colin de Verdière 2012; Natarov and Richards

2015), where the Ertel potential vorticity (EPV) is of small

magnitude owing to the weak stratification or small jfj.
There, it can relatively easily change sign as a result of the

addition or removal of EPV by wind stress and/or buoy-

ancy fluxes. When the sign of the EPV becomes opposite

to that of f, the front may become unstable with respect to

InI and/or SI. Note that the precise definitions of InI and

SI, and how to distinguish them, vary across different

groups of authors. The ones we are about to use follow

that of, for example, Haine and Marshall (1998) or Taylor

and Ferrari (2009). In particular, Thomas et al. (2013)

propose a systematic way to define them, based on their

energetic signatures.

The first limit case, the ‘‘pure InI’’ case, is that of a

barotropic geostrophic flow with uniform anticyclonic

shear characterized by Ro,21. In this case, the flow is

susceptible to InI, which feeds off of the KE of the lat-

erally sheared flow. The KE of the perturbations in-

creases as a result of lateral shear production:

LSP5 fRouy , (2)

where u is the across-front, horizontal velocity, and y are

the fluctuations in along-jet velocity (with y1 y the total

along-jet velocity).

The second extreme, the ‘‘pure SI’’ case, is that of a

baroclinic, geostrophic flow with uniform lateral density

gradient (an infinitely wide density front) and therefore

uniform thermal wind shear. The necessary condition for

pure SI is that Ri , 1. More generally, SI occurs when

Ro . 21, in which case the necessary condition for in-

stability is Ri, 1/(11Ro) (Haine and Marshall 1998;

Thomas et al. 2013). SI feeds off of theKE of the vertically

sheared geostrophic flow. The KE of the perturbations

increases as a result of geostrophic shear production:

GSP5
M2

f
yw , (3)

where w is the vertical velocity and M2 52(g/r0)›xr is

the lateral buoyancy gradient.

When shifting our focus away from these energetic

considerations, however, the two instabilities are strik-

ingly similar. For the purpose of the present article, we

do not always need to emphasize the difference between

the two instabilities, and therefore, we often refer to one

‘‘inertial-symmetric instability’’ (ISI), which encom-

passes the spectrum of instabilities, from one ‘‘pure’’

form to the other.

When considered within the most idealized linear

stability analysis (i.e., in an infinite domain with constant

coefficients), these instabilities only affect the KE bud-

get of the geostrophic flow. Indeed, InI is essentially

barotropic in nature, while SI’s and ISI’s fastest-growing

modes flow along isopycnals. It is therefore customary to

think of these instabilities as only marginally affecting

the potential energy (PE) of geostrophic fronts.

While not the main topic of the current article, a few

words should be said about scale selection of the dominant

growing mode. This topic is still actively researched, but

results from linear stability analysis predict that the scale

of the fastest-growing mode is the result of a competition

between two processes. On one hand, in any realistic

setting, ISI develops in a finite region of space, bounded

by the zero EPV contour, and sometimes by a rigid

boundary such as the ocean surface in our case. The im-

position of such boundaries in an inviscid fluid is thought

to be associated with an ‘‘ultraviolet catastrophe’’; that is,

the growth rate increases monotonously with the wave-

number. It does so asymptotically, toward a finite value,

which is that of the along-isopycnal perturbation in an

unbounded domain mentioned previously. On the other

hand, diffusion of momentum and tracers stabilizes the

shortest scales. This competition has been studied exten-

sively for pure InI (e.g., Dunkerton 1981; Kloosterziel and

Carnevale 2008; Griffiths 2008) but applies also to pure SI

(Stone 1966; Griffiths 2017).

One point worth noting is that the stabilization of the

shorter scales by diffusive processes does not necessarily

imply that the fastest-growing mode is ‘‘viscous’’; that is,

its growth rate does not have to be significantly impacted

by the diffusive time scale. A manifestation of this is

that the peak of the growth rate as a function of wave-

number does not have to be sharp and that for small

enough diffusivities, a relatively large number of modes

can grow at about the same speed (Dunkerton 1981;

Griffiths 2017). Another point worth noting is that in

the case of InI in the atmosphere, linear stability anal-

ysis significantly underestimates the scales observed

(Griffiths 2003b). Finally, numerical simulations of pure

SI occurring in oceanic submesoscale fronts systemati-

cally observe that the fastest-growing scale is the largest

one that the size of the unstable region can accommo-

date (e.g., Thomas 2005; Bachman and Taylor 2014),

even when viscosity is low enough to resolve secondary

instabilities (Taylor and Ferrari 2009).

To study the processes that set the scale of the ISI flow is

outside the scope of the current article, and whatever they
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are,wehereinafter refer to their outcomeas ‘‘diffusive scale

selection’’ (DSS). To our knowledge, no stability analysis,

linear or not, has been done for ISI at the level of detail that

is available for pure InI or even pure SI. Nonetheless, we

will keep discussing the potential influence of diffusive

processes on our results when appropriate.

In this article, we instead focus on the consequences of

ISI. In particular, we observe that contrary to the usual

argument mentioned earlier, its outcome is a flow that

creates significant PE-extracting diapycnal velocities. In

fact, the main result of this article is that in such a con-

figuration, the instabilities feed off of the PE of the front

in a significant way and turn it into PE fluctuations.

Furthermore, the term that executes the PE transfers

cannot be attributed to either pure InI or pure SI, which

supports our choice of often referring to one ISI.

In the present study, we retain a large degree of ide-

alization, in the sense that we will only consider two-

dimensional fronts (›y [ 0) and that we will consider

initial value problems, rather that generating the fronts

with realistic forcing. We adopt a heuristic approach

based on numerical experiments, with the intention to

motivate future analytical analyses such as that of

Ménesguen et al. (2012).

An important intermediate concept we introduce in

this article is that of a ‘‘geometric exclusion regime’’

(GXR). Its existence derives from N2 having to be

initially positive everywhere and is explained in the

appendix. The extent of the GXR will vary for different

frontal shapes, but its consequence is relatively simple:

low Richardson, low Rossby numbers (in terms of

magnitude) are difficult to find in tandem.

This article is organized as follows. In section 2, we

present some basic theoretical facts about ISI. In section 3,

we introduce the setup of our experiments, as well as the

GXR, and present our roadmap to the parameter space.

In section 4, we present a numerical illustration of the

process at stake and lay out our methodology to in-

terpret the energy budgets of the experiments. To ease

us into the analysis of the full experimental set, section 5

presents two additional case studies, illustrating cases

that resemble either pure InI or pure SI. Building upon

all previous sections, in section 6, we propose a sys-

tematic analysis of all our numerical experiments, dis-

cuss the importance of a three-parameter description of

ISI, and notice the relative lack of relevance of Ri and

GSP to understand the energetics of ISI. We present our

conclusions are some perspectives in section 7.

2. Review of potential vorticity and linear stability

ISI happens when the EPV and f are of opposite signs,

namely, when

fQ5 f$b � (f ẑ1$3 yŷ)5 f 2N2(11Ro2 1/Ri), 0:

(4)

In the equation above, b52g(r2 r0)/r0 is the un-

perturbed buoyancy field and x̂, ŷ, and ẑ are the across-

flow, along-flow, and vertical unit vectors of a positive

Cartesian system of coordinates. For future reference, ẑ

points upward, with the ocean surface located at z 5 0.

The occurrence of 1/Ri in Eq. (4) derives from inserting

the thermal wind balance relation

›y

›z
5

1

f

›b

›x
, (5)

into Eq. (1).

For a confined front, Q varies in space (e.g., Fig. 1c).

For now, however, we briefly ignore the spatial varia-

tions ofN2, Ri, and Ro, and the existence of boundaries.

All coefficients of the equations of motion are then

constant and a simple linear stability analysis provides a

useful qualitative description of the growing perturba-

tions. We consider a two-dimensional framework where

no along-flow perturbations are allowed (›y [ 0). The

linear, hydrostatic, inviscid Boussinesq equations, with

the momentum equation expanded around y and the

thermodynamic equation expanded around b, are as

follows (e.g., Whitt and Thomas 2013):

›
t
u2 f y1 ›

x
p5 0, (6a)

›
t
y1 f (11Ro)u1M2w/f 5 0, (6b)

2b1 ›
z
p5 0, (6c)

›
t
b1M2u1N2w5 0, and (6d)

›
x
u1 ›

z
w5 0: (6e)

Recall that 1/Ri 6¼ 0 whenever M2 6¼ 0. The velocity

vector v[ ux̂1 yŷ1wẑ represents the deviations about

yŷ, b is the buoyancy fluctuation field about b, and p is

the scaled pressure. Temporarily ignoring the presence

of boundaries allows us to consider planewaves; namely,

fv, bg5 fv0, b0g expi[kx1mz2 (v1 is)t], where k, m,

v, and s are all real numbers. Canceling the determinant

of the resulting linear system of equations yields:

v1 is56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fQ/N2 1N2(m1b)2

q
, (7)

where b 5 M2/N2 and m 5 2k/m. When the right-hand

side of Eq. (7) is purely real, we recover the dispersion

relation for internal waves in a baroclinic geostrophic

flow (Whitt and Thomas 2013). When fQ, 0 on the

other hand, one recovers the growth rate of ISI (e.g.,

Taylor and Ferrari 2009). In this case, indeed, at least
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one perturbation mode is unstable, namely, the one for

which m 5 2b, in which case v 5 0 and

s
0
5 jf j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

21
2Ro2 1

q
. (8)

This particular mode, whose motions are aligned with

isopycnals, is in fact the fastest-growing mode in the

simple case we are describing. Because it does not disturb

isopycnals, we only expect this instability to manifest

itself in terms of kinetic energy. Colin de Verdière (2012)
and Bachman and Taylor (2014) notice that if the focus

shifts away from this along-isopycnal, fastest-growing

mode, ISI can in principle extract PE from fronts. How-

ever, they do not provide scenarios as to why the fastest-

growing mode would not manifest itself primarily.

Indeed, according to Eq. (7), for a given geostrophic

flow, only the orientation m of the flow perturbations

determines the growth rate, not its scale (Taylor and

Ferrari 2009; Colin de Verdière 2012). However, recall

from section 1 that if we include diffusion of momentum

and/or buoyancy in the equations, and if we take into

account the boundaries of the unstable region, ISI se-

lects one mode of motion under what we call DSS. We

can reasonably expect that the results from linear sta-

bility analysis of pure InI and pure SI, as well as the

caveats associated with them (see section 1), can be

extended to ISI. If so, the choice of diffusive operators

may have consequences for the scale selection and,

therefore, quantitative consequences for our results. It is

hard to predict what this influence will be, and we prefer

to adopt a more pragmatic approach, which is to identify

and keep track of the potential consequences of the

diffusion operators, in a diagnostic manner.

We use frictional operators of the form

FIG. 1. Sketch of an unstable front, with l5 (12 tanh)/2,F05 50, and2Ro05 1/Ri05 1.4.

In all figures, the dashed–dotted line marks the location xi where M2 is maximum and the

dotted line marks the location xo where Ro is minimum. (a) Density r/r0 2 15 2 b/g

(shading) and 1/Ri (one white contour every 0.2). (b) Geostrophic flow y (shading) and Ro

(one white contour every 0.2; dashes indicate negative values, Ro being axially symmetric

with respect to x 5 0). (c) EPV Q, exhibiting a negative region where ISI can grow.
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D5 n
h
›2x 1 n

z
›2z 1 n

3h
›6x , (9)

which will apply to both the momentum and thermo-

dynamic equations at the same time. In Eq. (9), nh, nz
and n3h are the horizontal harmonic, vertical harmonic,

and horizontal tri-harmonic diffusion coefficients, re-

spectively. The inverse time scale for the dissipation of a

given planewavemode (k,m) is tD 5 nhk
21 nzm

21 n3hk
6.

When simulating ISI with a given number of grid points,

we employ diffusion coefficients that are as small as

possible for the initial motion, and verify that

a2 5 tD/s0
� 1: (10)

Even with very low values of a2, in all of our simulations,

the fastest-growing mode that emerges is typically one

with a scale, comparable with that of the entire unstable

region, consistent with the results of other authors

(Thomas 2005; Taylor and Ferrari 2009). We further dis-

cuss reasons and consequences of choosing this particular

operator in section 3b, and in section 6d, we investigate this

point further and see that diffusive processes, as we were

able to quantify them, do not seem to noticeably impact

our results.

3. Setup

a. Fundamental parameters

A computation of the unstable eigenmodes in a do-

main with boundaries, such as that of Ménesguen et al.

(2012), might yield the exact growth rate of the in-

stability, but would require a separate study. We prefer

to use the simple results from the previous section to

guide the design of our numerical experiments. We first

define an initial buoyancy field:

b5N2
0z1Bl(x/x) exp(z/d) , (11)

whereN0 is the background Brunt–Väisälä frequency,B
is the buoyancy difference across the front, l is the

horizontal structure of the buoyancy variations, x is the

characteristic width of the front, and d is the e-folding

depth scale over which the front penetrates (see Fig. 1a).

Integrating Eq. (5) from an infinite depth yields the

geostrophic velocity:

y5
Bd

fx
l0
�
x

x

�
exp
�z
d

�
, (12)

where the prime denotes the exact derivative (see

Fig. 1b).

Except for nondimensional measures of viscous ef-

fects, which are usually kept as small as possible, several

idealized studies of submesoscale dynamics only explore

one nondimensional parameter, usually the Richardson

or Rossby number. To achieve such a simplification,

assumptions have to be made, for example by ignoring

nontrivial spatial structures of the geostrophic flow (e.g.,

Stone 1966; Grisouard and Thomas 2016) or baroclinic

effects (e.g., Plougonven and Zeitlin 2009). We make

no such simplifications. Our initial density and flow

fields require the introduction of five independent di-

mensional quantities, N0, B, x, d, and f, measured in

combinations of distance and duration. Therefore, we

need three independent nondimensional parameters to

characterize these initial conditions.

First, we choose representative values of the minima

of Ri and Ro, so that they indicate if the initial condition

is unstable. For the Rossby number, we define (see the

appendix)

Ro
0
5Ro(x5 x

o
, z5 0), (13)

where xo is defined such that l000(xo/x)5 0 and

l00(xo/x), 0. That is, xo is at the location of maximum

anticyclonicity. Similarly, we define

Ri
0
5Ri(x5 x

i
, z5 0), (14)

where xi is defined such that l00(xi/x)5 0, that is, at the

center of the jet. Contrary to what Ro0 is to Ro,

Ri0 .min(Ri) because the location of min(Ri) is always

slightly shifted toward the cyclonic flank of the jet (see

the white contours in Fig. 1a). Nonetheless, it is close

enough for our purpose.

Perhaps the most surprising outcome of this procedure

is the existence of a GXR, which originates from the

constraint that N2 . 0 everywhere in the domain; that is,

initial isopycnal contours never cross (see the appendix).1

The primary culprit is the introduction of either a vertical

decay scale d or horizontal width x, this effect completely

disappearing when either d / ‘ or x / ‘. However,

oceanic fronts do have a finite size, which is likely to

play a role because of diffusive scale selection. The main

consequence is that Ri0 and Ro0 have to satisfy the fol-

lowing [see Eq. (A7)]:

Ri
0
Ro

0
, â5

l(x
i
/x) l00(x

o
/x)

[l0(x
i
/x)]2

. (15)

The inequality above reflects a geometric constraint of

our setup, with x/d / ‘ as Ri0Ro0 / â. Combinations

1 To illustrate this nontrivial constraint, we provide a Python

script in the supplemental material, which plots the initial condi-

tions for a given set of Ri0, Ro0, and F0.
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for which Ri0Ro0 . â are in the GXR, as illustrated in

Fig. 2. The right-hand side of Eq. (15), which happens to

be always negative here, only depends on the function

used to define the lateral structure of the front, with

xi/x and xo/x being mere consequences of this choice.

However, a few tries with the usual smooth jump func-

tions (tanh, erf, 12 e2x2 , etc.) all yield results in the

range 20.6 to 20.8.

One of the consequences of the GXR is that a pure SI

regime, as defined in the introduction, is hard to reach.

Indeed, to tip the scale from InI to SI, one needs both

Ri0 and jRo0j to be small, which is less likely to satisfy

Eq. (15) (recall that both sides of the inequality are

negative, since Ro0 , 0 by definition). How much the

GXR is likely to apply in nature, versus a pure artifact of

our setup, will not be investigated further.

Finally, for the third nondimensional parameter, we

choose an inverse Prandtl ratio2 (Vallis 2006, p. xiv);

namely,

F
0
5N

0
/f . (16)

Equivalently, one could choose the aspect ratio x/d [see

Eq. (A5)]. The F0 can be interpreted in several ways,

with a high value translating into, for example, a low-

latitude, high-stratification, and/or shallow aspect ratio.

It adds a third dimension to the parameter space. Mul-

tiple authors consider a low stratification (low F0) to

be a prerequisite for enhanced submesoscale instability

activity (Thomas et al. 2013; Callies et al. 2015;

McWilliams 2016), while others treat the low latitudes

(high F0) as fertile ground for ageostrophic instabilities

(Dunkerton 1981; D’Orgeville and Hua 2005; Holmes

et al. 2014; Natarov and Richards 2015). However, to

our knowledge, this parameter has not been treated as

systematically as Ro or Ri to characterize the sub-

mesoscale, other than this role as a prerequisite. We will

explore the parameter space along these three axes.

For a given choice of l, each numerical experiment is

identified by Ro0, Ri0, and F0. One last set of non-

dimensional numbers should complete the description

of our problem, namely, those related to frictional ef-

fects, which keep the numerical simulations stable.

However, we will keep these effects as small as possible

in the initial stages of the simulations. Because our focus

is on how ISI extracts energy from geostrophic flows,

and because dissipation of the perturbations appears to

be only a consequence of this extraction, we defer a

discussion on frictional effects to section 6d.

b. Physical and numerical configurations

The physical setup is sketched in Fig. 3. Our do-

mains come in four horizontal sizes: XS, S, M, and L,

of horizontal lengths Lx 5 17.5, 35, 70, and 140 km,

respectively. Indeed, as it turns out, x tends to infinity

as Ri0Ro0 approaches â [cf. Eqs. (15) and (A5)].

Thus, a numerical experiment that approaches this

limit requires a larger domain than an experiment that

does not. In all numerical experiments, our domain is

Lz 5 100m deep, d 5 50m, and f 5 1.03 3 1024 s21,

with Tf 5 2p/f 5 61 000 s.

FIG. 2. Sketch of the (Ri, Ro) parameter space. For illustration

purposes, â521/2. In white is the stable regime for which the EPV

and f are of opposite sign. In red is the GXR, that is, the couples

(Ri, Ro) that violate Eq. (15). Shaded are the couples (Ri, Ro),

which correspond to a possible unstable front, color coded by

Ri21 2Ro2 1. Note that this figure is merely a sketch: Ri and Ro

do not correspond to Ri0 and Ro0, and â 6¼21/2 in the text.

FIG. 3. Initial condition and physical domain for our numerical

simulations, for Ro0 521.2, Ri21
0 5 1:4 andF0 5 50, in which case

the domain is a size M. Shading represents Q/max(Q), the solid

magenta line highlights theQ5 0 contour, and black solid lines are

density contours. As in Fig. 1, the dashed–dotted and dotted

lines mark the locations xo and xi, respectively. The green dashed

rectangle shows the boundaries of the control volume used in the

energy budget of section 4, and the blue double arrows show the

widths x0 and x1.

2 This is not to be confused with the Prandtl number, the ratio of

momentum versus buoyancy diffusivity.
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The code we use, a modification of that of Winters

et al. (2004), is horizontally periodic, which necessitates

setting up initial conditions which are also periodic. We

choose

l5 l
i

�
L

x
2 x

x
0

�
l
i

�
x

x
1

�
, with l

i
(j)5 12 e2jjj3. (17)

The function l above consists of two fronts of oppo-

site signs and of widths 0 , x0 , x1, such that

exp[2(Lx/c0)
3], exp[2(Lx/c1)

3]5 1. This ensures hori-

zontal periodicity of b and N2, with ljx5 0 5 05 ljx5Lx
.

Separating the two fronts also ensures that they do not

affect each other’s shape. All results that follow are de-

rived in the appendix. The M2, Ri, and y are periodic

because l0
ijj50 5 0, and Ro and Q are periodic because

l00
i jj50 5 0 [cf. Eqs. (4), (11), and (12)].We set x15 0.3Lx,

in order for the secondary front to be systematically

stable. We compute B and x0 from f, d, F0, Ri0, and Ro0.

The code of Winters et al. (2004) is pseudospectral,

nonlinear, andnonhydrostatic.The set of equations solved is

›y

›t
1 (f ẑ1 z)3y1

�
fRou1

M2

f
w

�
ŷ5 bẑ2$p1Dy ,

(18a)

›
t
b1 (y � $)b1M2u1N2w5Db, and (18b)

›
x
u1 ›

z
w5 0, (18c)

where we used the identity (y � $)y5=(jyj2/2)1 z3y,

with $[ (›x, 0, ›z) and z5$3y, and merged all

gradients into one dynamical pressure gradient.

The operatorD is defined in Eq. (9). In the vertical, the

simple Laplacian ensures that the number of degrees of

freedom at the surface matches the four boundary con-

ditions for the four active scalars u, y, w, and b [for more

detail, see Grisouard and Thomas (2016)]. Also, in both

directions, our 2D numerical grids are fine enough to

accommodate values of Laplacian diffusion coefficients

that approach realistic values. Last, using only hyper-

diffusion operators would have required a fine-tuning of

their coefficient values for each numerical experiment.

Otherwise, the dealiasing action of high-order hyper-

diffusivity operators tuned for larger domainsmay act too

aggressively on experiments that run in smaller domains.

The Laplacian coefficients are kept constant through-

out, with nh 5 1m2s21 and nz 5 2.73 1025m2 s21. These

values are meant to be a compromise between the number

of points that we can afford and the order of magnitude of

typical background values for oceanic diffusivities of

tracers in quiet parts of the thermocline (e.g., Ledwell et al.

1993, 1998). In other words, our values for the Laplacian

coefficients are meant to be low estimates of the typical

oceanic coefficients but certainly not to represent a

realistic operator. Following up on this reasoning, numer-

ical instabilities due to aliasing are blamed on nh and nz
being too low. As it turns out, in all relevant cases, aliasing

only happens in the horizontal direction. Therefore, for

each experiment, we adjust n3h to ensure numerical sta-

bility. The damping operator D does not apply to the

background geostrophic flow, with negligible conse-

quences, and the same D applies to both momentum and

buoyancy (Prandtl number unity). We will see that the

choice ofDmostly influences the saturation and extinction

stages, after we are able to draw our main conclusions.

We estimate a2 for a given initial condition with em-

pirical guidance from the observed behavior of the

fastest-growing modes. First, we assume that the hori-

zontal half-wavelength of the instability-generated flow

is on the order of xa, the width of the unstable, fQ, 0

region. We then assume that the vertical wavelength is

on the order of da, the depth of the unstable region.

These constraints determine horizontal and vertical

wavelengths (ka, ma)5 (x21
a , 2d21

a )p. We measure xa
and da for each experiment, which yields our estimate

for a2, hereinafter referred to as follows:

a2
0 5

n
h
k2
a 1 n

z
m2

a 1 n
3h
k6
a

max(s
0
)

. (19)

Table 1 shows various features of the initial conditions.

In particular, it shows that a2
0 is usually of a few percent.

Vertically, we use a grid of 1025 points, corresponding

to a resolution of Dz ’ 9.8 cm. Horizontally, domains of

size XS, S, M, and L employ grids of 210, 211, 212, and 213

points, respectively, withDx’ 17.09m for all experiments.

The time step is Dt 5 180 s. We initialize the simulations

with random noise. Free-slip and no-buoyancy-fluctuation

boundary conditions are implemented at the top and

bottom, where we also taper off the frontal terms (Winters

and de la Fuente 2012).

We focus on the regime contained within

0:9#Ri21
0 # 1:4, 2 1:4#Ro

0
#20:9, and

20#F
0
# 80:

For example, the numerical experiment characterized

by F0 5 80, Ri21
0 5 1:2, and Ro0 5 20.9 is labeled

N80F12R09. Table 1 lists all experiments, along with

some of their specific features.

All experiments have similar life cycles, described by

Thorpe and Rotunno (1989): growth, saturation, and

decay. While the first two phases happen over the course

of a few tens of inertial periods at the most, every ex-

periment settles into a decay phase, which could last

hundreds of inertial periods. This phase is a low-intensity

regime, slowly extracting energy from the front, balanced
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by a slow dissipation. This regime would probably be

interrupted by other processes in the restless ocean.

Therefore, we run each experiment long enough for the

instability to grow and saturate, but stop integration at a

time t5 Ttot, in an ad hoc fashion. In general, high-jRo0j,
low-F0 experiments tend to saturate faster owing to a

faster breakup of the initial, negative EPV patch into

smaller patches, while low-F0 and low- Ro0 experiments

require longer integration periods (see Table 1). As a

remark, no readily available time scale, such as max(s0),

is helpful to determine Tf.

In Table 1, constraints due to the GXR [recall Fig. 2

and Eq. (15)] are visible. For example, low-Ri0, low-

jRo0j experiments require larger domains, reflecting the

divergence of x0 as Ri0Ro0 / â. Also notice the absence

of the couples (Ri0, Ro0) 5 (1.4, 20.9) and (1.4, 21),

which are in the GXR.

4. Case study: Ri21
0 &jRo0j

We now focus on the numerical experiment

N50F12R14 (i.e., Ri21
0 5 1:2, Ro0 5 21.4, and F0 5 50).

We choose this experiment because it is representative of

our experimental set. In particular, it highlights some

features of ISI not only as a blend between InI and SI but

as an instability with genuinely original dynamics. We

have jRo0j.Ri21
0 and, indeed, we will see (section 4b)

that lateral shear production exceeds geostrophic shear

production in extracting KE from the front. However, we

will see that these two energetic terms only account for a

significant fraction of the energy exchanges between the

front and the perturbations, but not its totality.

a. Time evolution

Snapshots of the instability-induced flow are presented

in Figs. 4 and 5 An animation of the flow is included in the

supplemental material. During the initial growth phase

(Figs. 4a and 5a), the flow forms circulation cells. Figure 5a

shows the streamlines on the motion before it has grown

large enough to disturb the background flow and highlights

that when accommodating for the boundaries of the un-

stable domain, the circulation cannot happen strictly along

FIG. 4. Snapshots of u (cm s21) for N50F12R14. As in Fig. 3, the

magenta lines mark the location of the Q5 0 contour(s), and the

green dashed rectanglemarks the boundaries of the control volume

for the energy budget. Black dashed lines are isopycnals.

TABLE 1. Some parameters of the numerical experiments. The Ttot

is in multiples of Tf.

Experiment Size Ttot n3h (m
6 s21) a2

0 (%) s0 (% of f)

N20F09R12 XS 34.1 0 16 70

N20F09R14 XS 14.4 0 16 83

N20F10R12 XS 33.0 0 12 73

N20F10R14 XS 14.0 0 12 85

N20F11R12 XS 32.0 0 8.9 75

N20F11R14 XS 13.8 0 9.1 87

N20F12R09 M 41 108 11 56

N20F12R10 S 18.9 0 7.9 63

N20F12R12 XS 15.5 0 6.6 77

N20F12R14 XS 13.5 0 7.0 89

N20F14R12 S 14.7 0 3.5 82

N20F14R14 XS 12.9 0 4.1 93

N50F09R12 S 17.0 7 3 107 6.2 70

N50F09R14 S 14.4 7 3 107 4.3 83

N50F10R10 S 83.4 7 3 107 11 58

N50F10R12 S 16.6 7 3 107 5.1 73

N50F10R14 S 14.0 7 3 107 3.5 85

N50F11R09 M 92.3 8 3 108 15 52

N50F11R10 M 63.9 4 3 108 8.5 60

N50F11R12 S 16.0 7 3 107 4.2 75

N50F11R14 S 13.7 7 3 107 2.9 87

N50F12R09 L 31.9 3.5 3 1010 11 56

N50F12R10 M 18.9 8 3 108 6.5 63

N50F12R12 S 15.5 7 3 107 3.4 77

N50F12R14 S 13.5 2 3 108 2.5 89

N50F14R12 M 14.7 4 3 108 2.4 82

N80F09R12 S 17.0 2 3 108 5.1 70

N80F09R14 S 14.4 2 3 108 2.9 83

N80F10R10 M 41.8 2 3 109 11 58

N80F10R12 M 16.6 4 3 108 4.3 73

N80F10R14 S 14.0 8 3 108 2.5 85

N80F11R09 L 92.3 3.5 3 1010 15 52

N80F11R10 M 19.8 8 3 109 8.2 60

N80F11R12 M 16.0 8 3 108 3.6 75

N80F11R14 M 13.7 4 3 109 2.2 87

N80F12R10 L 18.9 3.5 3 1010 6.3 63

N80F12R12 M 15.5 2 3 109 3.1 77
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isopycnals. In particular, DSS selects a scale that is fairly

large compared with the size of the unstable region, which

is consistent with the existing literature (cf. sections 1

and 2).

This diapycnal flow is a leading-order deviation from

the linear stability analysis of boundless inviscid ISI, for

which streamlines align with isopycnals. The presence of

boundaries here, and DSS in general, induces this

weakly diffusive (recall from Table 1 that a0 ’ 2.5%)

diapycnal flow that keeps growing and is bound to

eventually disturb isopycnals. It is responsible for the

extraction of PE. As time goes on, smaller and smaller

scales develop and diffusive effects grow in importance.

However, the D operator only plays a role in saturating

the ISI. While its nature is likely to have significant

quantitative effects, we claim that the existence of large

PE exchanges does not depend on its specifics. The ini-

tially growing flow is a first illustration of this point, to

which we will keep adding supporting evidence over the

course of this article.

At t 5 4Tf (Fig. 4a), contours of Q5 0 start being de-

formed by the instability. As the instability grows, the

Q5 0 contours break down into smaller and smaller

filament-like regions (Figs. 4b and 5b), reaching satura-

tion. As noticed by Thorpe and Rotunno (1989), the

creation of these small scales stops the growth of the

instability. The initial conditions, which allowed the

jet-scale ISI to develop, are no longer present, and the ISI

chokes. Note that the remaining pockets of negative EPV

are all susceptible to ISI individually. However, they

would need some time to grow and diabatic effects may

hinder their growth. Moreover, no stationary state is

achieved in N50F12R14 as in most of the numerical ex-

periments: pockets of negative EPV keep evolving and

sometimes merge, causing ISI to reappear episodically.

In the later stages of the ISI growth, streamlines and

isopycnals eventually align (Fig. 5b), as in pure SI.

However, this happens only in the core of the unstable

zone. Outside of this core (see, e.g., Fig. 5b), around

x 5 27km, z 5 215m, density overturns. Overturns

eventually disappear, although N50F12R14 does not

exhibit any gravitational instabilities at these locations.

A few possible explanations can be provided as to why

we observe no gravitational instability. First, studies on

convectively unstable internal waves (e.g., Winters and

Riley 1992; Winters and D’Asaro 1994; Lelong and

Dunkerton 1998) suggest that the fastest modes of

convective instability are vortex rolls with axes that

largely align with the along-propagation direction (the x

direction here). Because our two-dimensional simula-

tions do not allow this three-dimensional mode of mo-

tion to exist, convective instability may take too long to

develop here in a context of a rapidly evolving flow.

Another reason could be that at this stage of the

FIG. 5. Streamlines of N50F12R14 (colored lines, with the color representing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1w2

p
;

mm s21) and isopycnals (black dashed contours). Also in (a) are Q5 0 contours (magenta

lines at two different stages of the instability.
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instability, dissipation is the dominant energetic process

and prevents the rapid growth of the instability.

Figure 4b and the animation in the supplemental

material show that when saturating, internal waves ra-

diate from the anticyclonic flank of the unstable region,

as described qualitatively by Grisouard et al. (2016).

However, we will see that this represents a very small

fraction of the energy extracted from the front.

After some time (Fig. 4c), the dynamics enter an ex-

tinction phase during which ISI remains active, although

less intensely so. Like Thorpe andRotunno (1989), none

of our simulations reach a state in which ISI is com-

pletely extinguished.

b. Energy budget

Derived from Eqs. (18), the budgets of energy

densities are

›
t
K1$ � FK 2 bw1

M2

f
yw

zfflfflffl}|fflfflffl{GSP

1 fRouy
zfflfflffl}|fflfflffl{LSP

52«K, and

(20a)

›
t
P1$ � FP 1 bw2

b2y � $N2

2N4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
HABP

1
M2

N2
ub|fflfflffl{zfflfflffl}

GBP

52«P , (20b)

where K5 jyj2/2 is the kinetic energy density, and

P5 b2/2N2 is a definition of the potential energy density,

suitable for our purposes. The energy fluxes FK and FP
include those due to pressure work, advection, and diffu-

sion. The LSP and GSP are defined in Eqs. (2) and (3).

Two buoyancy production terms appear in Eq. (20b):

HABP52
b2y � $N2

2N4
and GBP5

M2

N2
ub , (21)

which stand for horizontal ageostrophic and geostrophic

buoyancy production, respectively.

Finally, the dissipation terms are

«K 5 (n
h
y
,x
1 n

3h
y
,5x
) � y

,x
1 n

z
(y

,z
)2, and (22a)

«P 5 (n
h
b
,x
1 n

3h
b
,5x
)

�
b

N2

�
,x

1 n
z
b
,z

�
b

N2

�
,z

, (22b)

where (�),nx 5 ›nx(�).
Recall that for pure InI and SI, LSP and GSP are

respectively the sole source terms, while isopycnals

remain unperturbed, and HABP and GBP are identi-

cally zero. Figure 6 shows snapshots, taken at t 5
4.65Tf, of LSP, GSP, and GBP. The HABP is com-

paratively negligible, here and in all of our experi-

ments. Figure 6c demonstrates that GBP acts as an

energy source for the perturbations and that at least in

some locations and at that instant, it is actually a larger

source of energy for the perturbations than LSP

and GSP.

To quantify these statements, we integrate Eqs. (20)

over the control volume V that is visible in Figs. 3 and 4

inside a dashed, rectangular contour. It is defined by

L
x
2 2x

0
# x#L

x
2 x

0
/10 and 2L

z
/3# z# 0: (23)

This definition ensures that for the present experiment as

well as all those listed in Table 1, all ISI-induced pertur-

bations are contained within the control volume. We add

Eqs. (20) and integrate over K, with h�i5 ÐÐ V� dxdz,
in order to form a mechanical energy budget for

M 5 K 1 P. For normalization purposes, we also de-

fine a reference value for the energy as the approximation

of hy2i/2 if the basic flow only comprised the unstable

front in a semi-infinite domain in both directions [cf. Eqs.

(12) and (17)]:

hK
0
i5 1

2

B2d2

f 2x2
0

ð0
2‘

e2z/d dz

ðLx

2‘

�
l0
i

�
L

x
2 x

x
0

�	2
dx

5
G(2/3)

28/3
B2d3

f 2x
0

, (24)

with G(j)5
Ð ‘
0
xj21e2x dx the gamma function. We nor-

malize the integrals of the power terms in Eqs. (20) by

FIG. 6. Snapshots of the three most important sources of energy

for the perturbations in N50F12R14 (shading), isopycnals (black

contours), and y1 y (gray contours), at time t5 4.65Tf. Blue indicates

a transfer of energy from the background to the perturbations.
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hfK0i. Figure 7 shows time series of these terms. The

internal wave energy flux, FXM 5
Þ
›VF K1Pf g � n̂ d‘, with

n̂ the outward normal to V, represents a very small

fraction of the energy lost by the perturbations, most

of it being dissipated inside V. The buoyancy pro-

duction term hwbi is also small, showing that within

the mechanical energy budget, KE to PE exchanges

are small.

Integrating hLSPi, hGSPi, hGBPi, and hHABPi over
time and normalizing by their sum,

u
X
5

1

§

ðTtot

0

hXi dt, with §5 �
X

ðTtot

0

hXi dt , (25)

where X 5 GBP, LSP, GSP, or HABP, shows that

uGBP ’ 53% (i.e., that GBP represents 53% of the

total energy extracted from the front), uLSP ’ 34%,

uGSP ’ 9%, and uHABP ’ 4%. Therefore, the contri-

butions from the PE budget are important to the

total energy budget of the ISI. This is a signifi-

cant departure from the narrative that InI and/or SI

only extract KE from fronts and confirms the in-

tuitions of Colin de Verdière (2012) and Bachman and

Taylor (2014).

Finally, note that dissipation always lags extraction.

This is another indication that the energy exchanges are

not primarily controlled by the operator D, though a

quantitative influence may exist.

5. Toward the limiting cases

N50F12R14 exhibits more energy extraction from

the front due to geostrophic buoyancy production

[GBP; cf. Eq. (21)] over lateral and geostrophic shear

productions [LSP and GSP, respectively; cf. Eqs. (2)

and (3)], which highlights the importance of the PE

budget when ISI is a blend of InI and SI. To connect the

previous finding with the bulk of the existing literature

on SI and InI, we now use two experiments, which

approach these limiting cases. Even though GBP will

remain a significant term throughout this study, we will

draw inspiration from the classification of Thomas et al.

(2013), in qualifying experiments as InI-like if uLSP .
uGSP [cf. Eq. (25)], and SI-like otherwise.

N50F12R09 is closer to a pure SI case, with

jRo0j,Ri21
0 . Figure 8 shows snapshots of the experi-

ment in its growing (Fig. 8a) and saturation (Fig. 8b)

phases. Closer to what one would expect from ISI in an

infinite domain, the flow is mostly isopycnal and remains

so, even in the saturation phase and after (not shown). In

Fig. 8a, and as opposed to Fig. 5a, it appears that iso-

pycnal flow is favored by the aspect ratio of the unstable

region, which is wider when the isopycnals are steep:

g5
x
a

d
a

M2
1

N2
1

’ 3, (26)

with xa/da the aspect ratio of the unstable region as

defined in section 3b, and M2
1/N

2
1 the isopycnal slope at

the location where fQ is minimum. In comparison,

N50F12R14 was characterized by g ’ 0.9; that is, the

front was much narrower, which under DSS seems to

have been an additional geometric constraint on the

initial circulation cells.

FIG. 7. Time series of the normalized integrals of the terms

involved in the mechanical energy budgets [Eq. (20)], for

N50F12R14. The buoyancy production term hwbi is not in-

cluded in the residual.

FIG. 8. Snapshots of N50F12R09, for (a) streamlines whose color

is indexed by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1w2

p
(mm s21) and (b) u (mm s21). Magenta

contours mark the Q5 0 contours.
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Nonetheless, GBP is again a significant source of energy

for the perturbations, if not as important as inN50F12R14.

Figure 9 shows time series of the terms, which extract en-

ergy from the geostrophic flow.We find thatGSP is indeed

the dominant extraction term, consistent with the SI-like

character of our initial conditions, but GBP and LSP are

also significant sources of energy for the perturbations.

After time integrating these time series, we find uGSP ’
48%, uGBP’ 21%, and uLSP’ 30%.However, after a first

initial phase during which GSP and GBP extract as much

energy from the front as each other, the instability enters a

slower phase in which GBP becomes less important than

both other terms. Therefore, we can expect uGSP to in-

crease with time and uGBP to decrease.

On the other end of our spectrum, with N50F09R14,

jRo0j.Ri21
0 and we approach the pure-InI case. The

normalized aspect ratio is now g ’ 0.7. Figure 10a

shows a snapshot of the experiment in its growing phase,

while Fig. 10b displays time series of the relevant power

terms. As expected, GSP is again weak (uGSP’ 9%) and

LSP is slightly larger than GBP, with uLSP ’ 49% and

uGBP ’ 41%.

6. Parameter exploration

a. On the relative importance of PE exchanges

In the previous sections, we have illustrated typical

behaviors, found in our set of numerical experiments.

They illustrated the main message of the present article,

namely, that inertial–symmetric instabilities involve im-

portant, and perhaps dominant, PE exchanges between

the geostrophic flow and the ageostrophic perturbations.

Let us lend further support to these arguments with the

full set of 37 experiments listed in Table 1.

Our first task is to graphically represent the values of

three scalars, namely, uGBP, uLSP, and uGSP, each of

which being described in a three-dimensional parameter

space. Note that, consistently with the three case studies

presented earlier, uHABP never exceeds 6%, and will

be ignored. For each remaining scalar, we use three scat-

terplots, each of which collapses the data along one in-

dependent parameter. However, we cannot use Ri0, Ro0,

FIG. 9. Time series of the normalized integrals of the terms, ex-

tracting energy from the geostrophic front, for N50F12R09.

FIG. 10. Evolution of the instability in N50F09R14. (a) Streamlines whose color is indexed

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1w2

p
(mm s21), as in Fig. 5. The magenta contour marks theQ5 0 contour. (b) Time

series of the normalized integrals of the terms, extracting energy from the geostrophic front.
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and F0 as axes of our three-dimensional representation,

since data points would collapse onto each other and the

results would be impossible to read. Instead, and some-

what arbitrarily, we redefine our basis by first locating the

point in the initial conditions where fQ is minimum. At

that location, we evaluate the Richardson number, the

Rossby number, and the inverse Prandtl ratio, which yields

Ri1, Ro1, and F1, respectively (cf. section 3a).

Figure 11 presents these nine scatterplots. Each face

of a cube contains 37 entries, corresponding to their co-

ordinates in either (Ro1, F1), (F1, Ri21
1 ), or (Ri21

1 , Ro1)

spaces. Each entry is color coded by the value of uGBP,

etc., and therefore, the sum of the values displayed at one

location across the three panels yields 12 uHABP’ 1. To

better distinguish entries on the (Ri21
1 , Ro1) plots, we shift

Ro1 by10.02 for entries for whichF05 80, and by20.02

when F0 5 20.

With Fig. 11, we confirm that, indeed, ISI can

extract a significant amount of PE from fronts. A quick

comparison of the color distribution across panels in-

deed reveals the predominance of GBP over the other

two terms, often representing at least 50% of the ex-

changes, sometimes less, but often more. On the other

hand, GSP is the weakest term in the vast majority of the

experiments, rarely accounting for more than 25% of

the exchanges. Finally, LSP often takes intermediate

values. Therefore, from an energetic point of view, our

experiments tend to be InI-like ISI.

Ourmainmessage is that in our set of experiments, PE

exchanges are significant and that we expect this finding

to extend to the ocean. We now try to interpret addi-

tional information, present in Fig. 11. However, because

these interpretations will not be backed by any physical

model or mechanism, the arguments laid out in the next

two subsections do not carry the same weight as our

main message.

b. On the weakness of GSP

The reason why GSP is usually weak is that in most of

our experiments, the instability is triggered because jRoj
is high rather than because Ri is low. Therefore, wher-

ever the instability starts, one could say that ISI is more

inertial than symmetric. We already proposed two

physical explanations when we described our setup de-

sign in section 3a. The first is that 1) in our experiments,

vorticity is slightly cyclonic where the Richardson is at

its lowest, while thermal wind shear helps to destabilize

the jet where the Rossby number is still strongly anti-

cyclonic (Fig. 1). The second explanation is 2) the exis-

tence of a GXR; that is, the geometry of our front

excludes combinations of low jRo0j and low Ri0 num-

bers, making SI-like experiments difficult to set up.

Two more explanations point at limitations of the

numerical setup. 3) Fronts with low Ri0 and low jRo0j
approach the divergence at the edge of the GXR and

therefore tend to have wider aspect ratios [cf. Eq. (A5)],

FIG. 11. Scatterplots of (left) uGBP, (center) uLSP, and (right) uGSP, each dot representing a numerical experiment and its color the

magnitude of the corresponding term. Each quantity is collapsed onto each one of the three axes of the parameter space (i.e., Ri21
1 , Ro1

and F1). Therefore, each quantity is displayed three times, once on each face of a given cube.
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requiring larger domains, which is whywe decided not to

run N80F12R09. And 4) numerical stability of experi-

ments with low Ri0 and low jRo0j also happen to require

much higher hyperviscosity coefficients (cf. Table 1),

which is why we decided not to run N80F12R14 and

N80F14R12. Explanations 3 and 4 are exacerbatedwhen

F1 is high, which also happens to be the regime in which

GSP is most important, according to Fig. 11. Therefore,

our decision to not run these experiments probably

eliminated a handful of SI-like experiments from our set

of experiments.

Based on visual comparisons of Figs. 5, 8, and 10, we

proposed in section 5 that an SI-like ISI requires a wide

front (i.e., a front of aspect ratio that is shallower than

the typical isopycnal slope) and used g [cf. Eq. (26)] to

quantify this statement. We follow up on this proposal,

keeping in mind that it is not backed by any rigorously

derived physical model. To know whether an experi-

ment is more SI- than InI-like, we only need to compare

GSP and LSP, for which we define

û5 u
GSP

/(u
GSP

1 u
LSP

) . (27)

Our proposal is therefore that û/ 1 when g/‘ and

that û/ 0 when g/ 0. Figure 12 broadly agrees with

this statement, except for two outliers, at g ’ 1.2

(û’ 0:47) and g ’ 2.0 (û’ 0:7). They correspond to

N20F11R12 and N20F12R10, two experiments for

which uGBP’ 90% and for which both GSP and LSP are

physically relatively meaningless. These are reminders

that considering only LSP and GSP may yield little

physical understanding. For example, it turns out that

g does not depend much on any measure of F, and

neither does û. On the other hand, uGSP is greater when

F1 is high, because it usually also corresponds to lower

values of uGBP (Fig. 11). Also, using g as abscissa for

uGSP, uLSP, and uGBP yields very poor results, because

uGSP does not correlate at all with g. Another reminder

that without a physical model, interpretation of these

numbers can be of only limited value.

c. The parameter space: Two- or three-dimensional?

We just mentioned that GSP is more important in

high-stratification or low-latitude experiments. It then

seems that Ro0 and Ri0 are not the sole parameters that

determine whether an experiment will be more InI-like

than SI-like but that at least a third parameter is in-

volved, as predicted in section 3a. That Ri1 and Ro1 are

not sufficient can be easily seen in the (Ri21
1 , Ro1)

scatterplots. In several cases, exemplified when, for ex-

ample, Ro1 ’ 21.2 (recall that in Fig. 11, these values

are artificially shifted), identical couples of values yield

very different numbers for uGBP, uLSP, and uGSP. In fact,

the Richardson number appears to be a poor predictor

for the various uX.

On the other hand, F1 and jRo1j appear to be better

predictors of our results. Indeed, the (Ro1,F1) panels show

that higher values for F1 and jRo1j correspond to higher

values of uGBP and lower values of uLSP. The uGSP takes

higher values for high F1 and low jRo1j, independently of
Ri1. The last statement can appear surprising at first, given

that both Ri1 andGSP are associated with SI. It also seems

to rule outRi1 as ameaningful nondimensional parameter,

bringing the dimensionality of the parameter space from

three back to two. This may be interpreted in the light of

our previous comments on how SI-like instabilities are

underrepresented in our dataset, for reasons both physical

and technical. Thus, it is not surprising that our experi-

ments are well described by the couple of parameters that

characterize InI-like experiments. Moreover, if SI-like

instability is found at low jRo1j, then according to Fig. 2,

Ri1 can only take a limited range of values. Therefore, our

dataset does not rule out the possibility that GSP could be

important when Ri21
1 is significantly larger than jRo1j,

regardless of the value of Ro1. In conclusion, our results

are too limited to draw any conclusion on the number of

dimensions of our parameter space.

d. Diffusive effects

We mentioned in sections 1 and 2 the possibility that

diffusive effects may have an influence on the quanti-

tative outcome of this study. Recall that according to

linear stability analysis, scale selection depends on the

diffusivity coefficients of momentum and buoyancy,

even when diffusive effects are too weak to noticeably

impact the time scale of the instability in its linear

growth phase.

FIG. 12. Fraction of the KE extracted from the front by hGSPi, as
a function of the normalized aspect ratio g. Each dot corresponds

to a numerical experiment.
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However, we can take advantage of the fact that we do

not try to control the nondimensional intensity of diffu-

sive effects. This is reflected in Table 1, which shows that

the parameter a2
0 covers a relatively wide range of (small)

values. The explanation is that while the combined vari-

ations of Ri0, Ro0, andF0 create fronts of widely different

sizes, we keep the values of nz and nh [cf. Eq. (9)] constant

across experiments. Larger domains do tend to be asso-

ciated with larger values of n3h, but the hyperdiffusion

operator mainly acts on the smaller scales, created after

the linear growth phase. Therefore, it is mostly the har-

monic operator coefficients nz and nh that set the value of

a2
0. Nonetheless, our various attempts to recast the pa-

rameter space along different axes including a2
0 (say, Ro1,

Ri1, and a
2
0), and plotting the corresponding equivalent to

Fig. 11, did not yield any noticeable pattern (not shown).

We also decided to run an experiment, identical to

N50F12R14 (described in section 4), except for the dif-

fusion operator. In this alternative experiment, we use

D0 5 n
3h
›6x 1 n

3z
›6z , (28)

with n3h 5 1010m6 s21 and n3z 5 1029m6 s21. As a com-

parison, combining these values with the same ka andma

as for the original N50F12R14 [recall Eq. (9)] yields

a2
0 ’ 53 1025, three orders of magnitude smaller than

that of N50F12R14. Consistently with the predictions of

linear stability analysis, however, the scale that is selected

is much shorter than the one in N50F12R14 in both x and

z directions (not shown). Consequently, the effective

value ofa2
0 must be larger, althoughwe did not attempt to

compute it. Remarkably, however, the final numbers that

we deem relevant to the discussion are similar to those of

N50F12R14: uGBP 5 46%, uLSP 5 39%, and uGSP 5 9%.

One should not overinterpret how similar these values

are to those obtained in section 4b (53%, 34%, and 9%,

respectively). Some coincidence cannot be excluded.

By themselves, the two results described above do not

rule out the possibility that diffusive effects may impact

energy exchanges. A more satisfactory strategy would be

to run a parallel set of 37 experiments, only with lower

(hyper)diffusivity coefficients, which would necessitate a

finer resolution. In light of the numerical cost to run and

process these experiments, and the lack of promise from

our preliminary attempts to detect a robust effect, we

decided against it. Itmay beworthwhile to investigate this

issue in a future study.

7. Conclusions and perspectives

We demonstrated numerically that inertial–symmetric

instability (ISI) of surface oceanic density fronts with

finite width and depth induce exchanges of potential

energy (PE) with the geostrophic flow and that these

exchanges can be as important as those of kinetic energy

(KE). The geometric interpretation is rather simple: in

our simulations, viscid ISI selects a mode that grows

within the fQ, 0 region, a process we referred to as

diffusive scale selection (DSS). Even though ISI tends to

enforce along-isopycnal flow within the unstable region,

the finite size of the former necessarily implies diapycnal

recirculations around it. In sections 4 and 5, we presented

two such cases, which we called InI-like ISI, but which we

could have called baroclinic inertial instabilities. They are

instabilities that arise because of a large negative Ro in

the presence of a lateral density gradient and which gain

energy from the fronts’ KE as well as PE. In section 5, we

also presented a case with largeF1, small jRoj, and small

Ri. In this case, the front was wide enough for the circu-

lation cells to align more with isopycnals, and the PE

exchanges were reduced. It approached the predictions of

standard linear stability theory for SI-like ISI such as

that laid out by Thomas et al. (2013), that is, with GSP

dominating LSP (and GBP).

Systematically, once the instability has reached a

critical amplitude, the ageostrophic flow irreversibly

displaces isopycnals. In our numerical experiments,

GBP systematically represents a sink of PE for the

geostrophic flow. This result is somewhat surprising

because ISI can be considered a blend of inertial and

symmetric instabilities [in the sense of Thomas et al.

(2013)] and because, taken individually, these two in-

stabilities mostly impact the KE of fronts. To our

knowledge, the existing body of literature on loss of PE

of geostrophic flows focuses on two processes: mixed

layer instabilities and strain-induced frontogenesis

(McWilliams 2016, and references therein). These two

processes convert some PE of the geostrophic flow into

KE, creating flows that tend to flatten isopycnals. Here,

GBP converts PE from the geostrophic front into PE of

ageostrophic perturbations, which eventually feed en-

ergy dissipation. Conversion into KE is not as important

as dissipation, and its sign is not constant (Fig. 7).

In designing our experiments, we had to introduce a

third nondimensional parameter. For convenience, we

chose F, a measure of stratification versus Coriolis fre-

quency, although other choices could have been con-

sidered. Figure 11 reminds us that F is actually a very

important parameter. This figure hints at a distinction

between high- and low-stratification ISI, but perhaps

more interestingly, low- and high-latitude ISI, the for-

mer being characterized by low PE exchanges, and vice

versa. On the other hand theRichardson number has the

least predictive potential (sections 6b and 6c). To pa-

rameterize the energetic impact of ISI on geostrophic

flows, we need to better understand whether the
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parameter space is two- or three-dimensional, as well as

the predictive power of these parameters.

Our results rely onF being moderate. In cases whereF
is very large, the relative intensity of PE exchanges seems

to diminish in our experiments. In the extreme case of

being very close to the equator (F / ‘), Colin de

Verdière and Schopp (1994) and Colin de Verdière (2012)
predict that nontraditional effects would play a significant

role, introducing the need for more nondimensional pa-

rameters. In the other extreme case where F would be

closer to unity (i.e., away from the equator and very weak

stratification), Colin de Verdière (2012) also predicts that

nontraditional effects would play a significant role.

Not all couples of Richardson and Rossby numbers are

allowed in our setup, which may apply to actual oceanic

fronts. Indeed, Eq. (15) and Fig. 2 illustrate that as the

Rossby number decreases in magnitude, the Richardson

number cannot take arbitrarily low values, a regime we

referred to as geometric exclusion regime (GXR). The

extent of the GXR depends on the choice of shape of the

front. TheN2 does vary vertically in the top tens of meters

of the ocean, and even though these variations are not

likely to be as simple as our exponential decay, constraints

may arise, with potential consequences on the probability

density functions of Rossby and Richardson numbers.

The combination ofDSS and theGXR suggests thatwe

may need to better define the context in which previous

studies of pure SI apply. Such studies usually assume that

the focus is on the core of the front and that the domains

are small enough to relegate lateral variations of the flow

to the far field. Current state-of-the-art parameterizations

such as that of Bachman et al. (2017) rely on this as-

sumption. However, this reasoning is at odds with DSS in

general, and the cases described in sections 5, 6b, and 6c

indicate that this may only be possible in cases that ap-

proach the singularity bordering the GXR. Such config-

urations have been difficult to simulate with our setup.

The existence of this singularity may be a hint that such

conditions could be hard to find in nature, and at least that

this issue requires further investigation.

The idealized nature of this study, and numerical design

limitations, highlight multiple avenues of improvement.

Perhaps the main limitation of our study lies in its two-

dimensionality. Recent studies have shown that allowing

along-front perturbations drastically modifies the dynam-

ics at play (e.g., Ribstein et al. 2014; Arobone and Sarkar

2015; Natarov andRichards 2015; Skyllingstad et al. 2017),

although our main conclusion (i.e., that ISI induces sig-

nificant PE exchanges) is likely to hold.

A second avenue of improvement would be to better

understand the role of the top boundary conditions. In

our case, fixing the buoyancy constant on top leads to

adiabatic PV fluxes across the surface, which might have

influenced the evolution of our instabilities. Some of our

experiments featured highly nonlinear growths (not

shown) in ways that were hard to predict, and PV fluxes

might have been the culprits. However, the question of

which set of boundary conditions is the most realistic

necessarily depends on the problem (for a discussion on a

related problem, see, e.g., Thorpe and Rotunno (1989),

Thomas (2005), and Grisouard and Thomas (2016)].

A third avenue of improvement is to better represent the

dissipative processes. Our crude representation, based on

constant (hyper)viscosity coefficients, has facilitated the

observation and interpretations of the experiments, at the

expense of accurately representing secondary instabilities

(Taylor and Ferrari 2009). Our attempts to detect a

quantitative influence of dissipative processes (section 6d)

did not yield any robust result but may have been too in-

complete to rule them out either. Our main conclusion,

which ismainly qualitative, is unlikely to be affected by this

omission, since dissipation temporally lags extraction (cf.

Fig. 7), but important details about the evolution of the

instability might be missing.

And finally, results will be limited as long as no ana-

lytical work such as that of Ménesguen et al. (2012) is

performed. Such an analysis would allow us to better

interpret the results and design the better scalings that

are necessary for improved ISI parameterizations. In

particular, the framework of Bachman et al. (2017) for

pure SI may be amendable to include the impact of LSP

and GBP on newly defined operators for momentum

and tracer diffusion. While this would represent a sig-

nificant quantitative expansion of the parameterization,

many of the qualitative aspects of pure SI, and in par-

ticular the PV flux triggering of SI, would be relatively

straightforward to adapt.
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APPENDIX

Initial Conditions: Intermediate Quantities and
Constraints

Let us first define Ri0, a representative value for Ri

with respect to the growth rate of a pure symmetric in-

stability (i.e., its minimum value). This value will be met

at the surface of the ocean, where Ri is minimum (be-

cause of the simple nature of our front, there is only one

such location; see Fig. 1). The expressions for N2, M2,

and Ri at z5 0, following the notations of section 2 and

introducing j 5 x/x, are therefore

N2j
z50

5
›b

›z






z50

5N2
0 1

B

d
l(j) , (A1a)

M2j
z50

5
›b

›x






z50

5
B

x
l0(j), and (A1b)

Rij
z50

5
f 2N2

M4






z50

5

�
xfN

0

B

�2 11
B

dN2
0

l(j)

[l0(j)]2
. (A1c)

We do not attempt to locate exactly where Ri is

minimum, but instead simply locate where its de-

nominator is maximum [i.e., ji such that l00(ji)5 0] and

use it to define

Ri
0
5

�
xfN

0

Ba
1

�2
 
11

Ba
0

dN2
0

!
, (A2)

with a0 5 l(ji) and a1 5 l0(ji). Although Ri0 .min(Ri),

their values are sufficiently close (within a factor of

30% in our numerical simulations) to treat Ri0 as a good

enough value to design numerical simulations. The

definition of Ro0 is simpler, based on the expression for

Ro at z 5 0:

Roj
z50

5
1

f

›y

›x






z50

5
Bd

f 2x2
l00(j) . (A3)

The location j that minimizes Ro and therefore would

maximize the growth rate of a pure inertial instability,

and which we call jo 5 xo/x, is the one that satisfies

l000(jo)5 0. We introduce a2 5l00(jo), 0, such that

Ro
0
5

Bda
2

f 2x2
. (A4)

UnlikeRi0, Ro0 is actually theminimumvalue of Ro over

the field. The nondimensional quantities ji, jo, a0, a1, and

a2 only depend on the choice of l. For example, for the

tanh profile used in Fig. 1, (ji, jo)5 [0, 2a sinh(1/
ffiffiffi
2

p
)]

and (a0, a1, a2)5 f1/2, 21/2, 2[
ffiffiffi
2

p
cosh3(jo)]

21g, and

for the 12 e2jjj3 profile used in the rest of the article,

(ji, jo)5 [2(2/3)1/3, 2(11
ffiffiffi
7

p
/3)1/3] and (a0, a1, a2) ’

(0.49, 21.18, 22.06).

The design of our numerical experiments requires

dimensional values based on prescribed values of Ri0,

Ro0, and F0. If we set the values for f and d, as we do in

the present article, then we have

B

df 2
5

Ro
0
F2

0

a
2
Bu

0

and
x

d
5

F
0ffiffiffiffiffiffiffiffi

Bu
0

p , (A5)

with

Bu
0
5

�
N

0
d

fx

�2

5

�
a21
a22
Ri

0
Ro

0
2

a
0

a
2

�
Ro

0
. (A6)

In our experiments, we usually have Bu0 � 1, although

its magnitude never is a defining feature of the dynamics

at play. By definition, Bu0 $ 0 and Ro0 , 0, which

highlights a strong constraint on which (Ri0, Ro0) cou-

ples are allowed, namely, that they have to satisfy

Ri
0
Ro

0
, a

0
a
2
/a21 . (A7)

There is therefore a geometric exclusion regime,

which depends on l. Its origin can be traced back to Eq.

(A1a) and the condition that N2 . 0 everywhere in the

domain (i.e., that isopycnals do not cross). To meet this

condition is nontrivial when the lateral buoyancy gra-

dients vary in both the horizontal and vertical directions.

When the condition above is marginally violated

(Ri0Ro0 5 a0a2/a
2
1), the front has to be infinitely wide to

accommodate both a strong lateral density gradient

(small Ri0) and a weak lateral velocity gradient (small

Ro0).

From a practical point of view, we want a0a2/a
2
1 to be as

close to zero as possible to minimize the size of the ex-

clusion regime, which partially dictates the choice for l.

For example, the tanhprofile used inFig. 1 and e2x3 used in

the rest of the article are characterized by a0a2/a1’20.77

and 20.72, respectively (recall that Ro0 , 0).

Finally, note that the geometric exclusion regime is a

direct consequence of the structure of the front. Indeed, if

the frontal part in b [Eq. (11)] does not depend on z, then

N2 5N2
0 everywhere; the parameter a0 does not appear in

Eqs. (A1c) and (A2), which propagates all the way to Eq.

(A7), and the latter is automatically satisfied. On the other

hand, if x / ‘, Ro, Bu[ 0, and there is no singularity.
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