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ABSTRACT

Inertial waves propagating upward in a geostrophically balanced front experience critical reflections against the

ocean surface. Such reflections naturally create oscillations with small vertical scales, and viscous friction becomes a

dominant process. Here, friction modifies the polarization relations of internal waves and allows energy from the

balanced front to be exchanged with the ageostrophic motions and eventually dissipated. In addition, while in the

well-known inviscid case internal waves propagate on only two characteristics, this study demonstrates using an

analytical model that strong viscous effects introduce additional oscillatory modes that can exchange energy with

the front.Moreover, during a linear, near-critical reflection, the superposition of several of these oscillations induces

an even stronger energy exchange with the front.When the Richardson number based on the frontal thermal wind

shear is O(1), the rate of energy exchange peaks at wave frequencies that are near inertial and is comparable in

magnitude to the energy flux of the incident, upward-propagating waves. Two-dimensional, linear numerical ex-

periments confirm this finding. The analytical model also demonstrates that this process is qualitatively insensitive

to the actual value of the viscosity or the form of the boundary condition at the surface. In fully nonlinear ex-

periments, the authors recover these qualitative conclusions. However, nonlinear wave–wave interactions and

turbulence in particular, strongly modify the amount of energy that is exchanged with the front. In practice, such

nonlinear effects are only activewhen the incident waves have frequencies higher than theCoriolis frequency, since

these configurations are conducive to near-resonant triad interactions between incident and reflected waves.

1. Introduction

Most of the ocean’s kinetic energy is contained in the

mesoscale eddyfield (Ferrari andWunsch 2009),with flows

characterized by the hydrostatic and geostrophic balances.

Such ‘‘balanced’’ motions tend to aggregate into larger

scales, following an inverse cascade of energy. Energy

dissipation on the other hand happens at much smaller

scales, and understanding how energy in balancedmotions

is transferred to small scales is currently the subject of in-

tense research. Ocean fronts are believed to host possible

energy pathways for dissipating the mesoscale eddy field

(Capet et al. 2008; Molemaker et al. 2010; D’Asaro et al.

2011). An ocean front is characterized by large horizontal

density gradients, strong vertical shear, and Rossby and

Richardson numbers that can be of order one. In this case,

the geostrophic balance is not overwhelmingly dominant

and ageostrophic motions can arise that break the inverse

cascade (Thomas et al. 2008; Capet et al. 2008).

One ageostrophic instability that is particularly ef-

fective at removing kinetic energy from geostrophic

frontal flows is symmetric instability (SI). SI forms in the

surface boundary layer of ocean fronts when the strati-

fication is weakened by winds or sea-to-air heat transfer

such that the Richardson number Ri of the balanced

flow is less than one (Haine and Marshall 1998; Taylor

and Ferrari 2009; Thomas and Taylor 2010; Thomas

et al. 2013). In the absence of destabilizing atmospheric

forcing, SI rapidly restratifies the boundary layer,
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driving Ri to one, thus extinguishing itself (Taylor and

Ferrari 2009). At this stage, mixed layer instability

(MLI), a type of baroclinic instability, takes over and

further increases Ri past one (Boccaletti et al. 2007; Fox-

Kemper et al. 2008). MLI is primarily a balanced in-

stability and does not result in the direct dissipation of

frontal energy (Boccaletti et al. 2007; Callies et al. 2015).

It is therefore not well understood how energy in bal-

anced motions is dissipated for Ri. 1.

In this article, we explore a possible pathway for energy

removal from fronts in theRi. 1 regime involving internal

waves. Previous studies have shown that internal waves can

be trapped by ocean fronts (e.g., Kunze and Sanford 1984;

Kunze et al. 1995; Rainville and Pinkel 2004; Whitt and

Thomas 2013; Joyce et al. 2013) and that they can exchange

energy with them (Thomas and Taylor 2014). Internal

waves in the ocean are usually generated by the winds and

tides and are restored by the Coriolis force, characterized

by the Coriolis frequency f, and by buoyancy forces, char-

acterized by the buoyancy frequency N5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(g/r0)›zr

p
.

Here, g is the gravitational acceleration, r0 is a constant

reference density, and r0 1 r is the unperturbed density

field. In an ocean front, however, the restoring force of

internal waves is affected by the horizontal buoyancy gra-

dient of the balanced flow, characterized by the quantity

S2 52(g/r0)›xr, where x is the across-front direction, and

by the vertical shear in thermalwindbalance, namely, jS2/f j.
This shear imparts a horizontal component to the ab-

solute vorticity of the fluid and therefore modifies the

effective Coriolis force (i.e., the advection of absolute

momentum; Whitt and Thomas 2013).

These modifications to the restoring forces change the

internal waves’ propagation properties, including the

characteristic angles along which their energy propagates

(Mooers 1975; Whitt and Thomas 2013). In particular,

internal waves of frequency f, or inertial waves, propa-

gating in oceanic fronts can flux energy either horizon-

tally, as in the classical limit, or on a slanted path. In

Grisouard and Thomas (2015, hereinafter referred to as

GT15), we studied a consequence of this property, which

is that when waves of frequency f propagate upward (e.g.,

associated with a formerly superinertial wave that has

propagated from a lower latitude; see section 7 in GT15

for additional examples) along the steep angle and en-

counter the flat ocean surface, they cannot reflect back

down. This case is a singularity of the linear, inviscid

theory since the reflected ray tubes become infinitely fo-

cused and the energy infinitely dense. In GT15, we called

such a reflection critical by analogy with the critical re-

flection of classical internal waves against a wall, whose

slopematches thewave characteristic slope (Phillips 1966;

Thorpe and Haines 1987) or with the critical reflection of

inertial waves against a horizontal boundary in the case

when the horizontal component of Earth’s rotation vector

cannot be ignored (Gerkema and Shrira 2005).

As we show in this article, critical and near-critical re-

flection of internal waves against the ocean surface result in

an exchange of energy with fronts. First, in section 2, we

review the propagation, reflection, and energetics of in-

viscid, steady-amplitude internal waves in fronts. In section

3, we introduce the propagation properties of steady-

amplitude internal waves in fronts when viscous effects

are taken into account. We also introduce a simplified

linear analytical model, which highlights the role of viscous

dissipation and of critical and near-critical reflections when

exchanging energy with fronts. In section 4, we present

numerical simulations, which are linear in the sense that we

cancel all explicit advective terms to test the analytical

predictions. In section 5, we discuss three effects that could

potentially modify our conclusions, namely, the value of

viscosity, the form of the boundary condition on the

buoyancy, and nonlinear effects. While the first two effects

do not qualitatively alter our conclusions, fully nonlinear

simulations introduce newphysics: wave–wave interactions

and turbulence, which qualitatively modify the exchanges

between the front and the ageostrophic motions. Conclu-

sions and further insights are presented in section 6.

2. Inviscid internal waves in fronts

a. Critical, forward, and backward reflections

The configuration we consider is nearly identical to

the one used by GT15: an idealized ocean front in geo-

strophic and hydrostatic balance, characterized by

temporally and spatially uniform vertical and horizontal

buoyancy gradients N2 and S2, respectively. We orient

the Cartesian coordinate axes such that z is the vertical

coordinate, y is the alongfront direction, and x is the

(horizontal) across-front direction. Alongfront veloci-

ties are permitted, but alongfront variations (›y [ 0) are

not permitted. We can write the density field as

r(x, z)5 r
0
1 r(x, z)1 r0(x, z, t) , (1)

where r0 1 r is the balanced frontal density field, and r0 is
the density perturbation. Because the ocean is charac-

terized by r1 r0 � r0, we use the Boussinesq approxi-

mation. Geostrophy implies the existence of a thermal

wind y(z) in the alongfront direction such that yz 5 S2/f .

Oceanic fronts are typically submesoscale features

whose width is on the order of 10km, allowing us to

approximate f as a constant. The thermal wind shear is

associated with a balanced Richardson number Ri:

Ri5 f 2N2/S4 , (2)
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and we assume that Ri. 1, so that the flow is stable to

symmetric instability. The features described so far will

hereinafter be referred to as the ‘‘frontal flow.’’

In the present article, internal waves are treated as

perturbations relative to the balanced frontal flow.

We only consider near-inertial waves, namely internal

waves of frequency v’ f, which justifies the use of the

hydrostatic approximation, that is, pz 5 b, where p is

the scaled pressure anomaly, the lettered subscript

denotes a partial derivative, and b 5 2gr0/r0 is the

buoyancy perturbation. When propagating in an in-

viscid medium in the absence of external forcing, the

wave propagation is described by the Eliassen–

Sawyer equation:

( f 2 1 ›2t )pzz
2 2S2p

xz
1N2p

xx
5 0. (3)

We now consider a plane wave characterized by a

wave vector k 5 (k, m), where k 5 2am, and m is the

vertical wavenumber, described by the hydrostatic dis-

persion relationship of internal waves in fronts (GT15):

V2(a)5 f 2 1a2N2 1 2aS2 , (4)

where V is the frequency. Signals characterized by

a with an oscillating frequency v 5 V(a) are plane, in-

viscid internal waves. As shown by, for example,Mooers

(1975) or Whitt and Thomas (2013), the minimum wave

frequency allowed by the dispersion relationship vm is

lower than f, namely,

v
m
5 f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 1/Ri

p
, (5)

which is obtained when a 5 2S2/N2, that is, when the

phase lines, whose slopes are equal to a, run parallel to

isopycnals.

Another consequence is that as jS2j increases, near-
inertial wave energy can propagate along two charac-

teristics with increasingly different slopes a1
v and a2

v

(Mooers 1975; Whitt and Thomas 2013). We hereinafter

refer to them as steep and shallow, respectively, and by

our definition, ja1
v j. ja2

v j. Crucially for inertial waves

(v5 f ), Eq. (4) admits two solutions, namely, a2
f 5 0 and

a1
f 522S2/N2. This means that inertial waves propa-

gating upward experience a critical reflection off the

ocean surface, as documented in GT15. The critical re-

flection separates the frequency space into two regions:

those of forward (v . f ) and of backward (v , f ) re-

flections, as illustrated in Fig. 1. Reflections are focusing

(i.e., ray tubes shrink) when incident waves follow the

steep (versus shallow) characteristics and defocusing

otherwise. In the present work, we will only consider

focusing reflections.

b. Equations of motion and inviscid wave
propagation

We now consider the following hydrostatic set of

Boussinesq equations on an f plane:

D
t
u2 f y1p

x
5 0, (6a)

D
t
y1 fu1 (S2/f )w5 0, (6b)

2b1 p
z
5 0, (6c)

D
t
b1 S2u1N2w5 0, and (6d)

u
x
1w

z
5 0, (6e)

where Dt [ ›t 1 (u � =) is the material derivative for the

perturbations, and u 5 (u, y, w) is the velocity pertur-

bations vector along with its Cartesian components. The

perturbations are defined with respect to the frontal

flow, hence the unusual presence of terms proportional

to S2 in Eqs. (6b) and (6d) (Mooers 1975; Whitt and

Thomas 2013).

Internal waves induce perturbations in all u, y, w, b,

and p fields, for which relative amplitudes of and phase

differences between each field follow specific polariza-

tion relations. Assuming a freely propagating, plane,

inviscid internal wave structure for the perturbations,

namely,

(u, y,w, b)5RefP
0
P6

v exp[i(2a6
vmx1mz2vt)]g ,

where Re denotes the real part and P0 is a reference

pressure coefficient, and substituting this ansatz into

Eqs. (6) yields

P6
v 5

im

S2 1a6
vN

2

2
6664

iv

f 1a6
v S

2/f

ia6
vv

S2 1a6
vN

2

3
7775 . (7)

FIG. 1. Schematic of (a) backward (v , f ), (b) critical (v 5 f ),

and (c) forward (v . f ) reflections. Gray lines are unperturbed

isopycnals, dashed lines are wave characteristics oriented along

their associated direction of propagation.
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From Eq. (7), we deduce that u and w oscillate in phase

with each other and in quadrature with y and b.

c. Energetics of inviscid waves

Wedefine the lateral average operator h�i5 (1/L)
Ð � dx,

where L is the length of the domain, and assume

that the domain is periodic in x. The laterally av-

eraged evolution equation for the horizontal ki-

netic energy K h 5 (u2 1 y2)/2, namely, h[Eq. (6a)]u1
[Eq. (6b)]y1 [Eq. (6c)]wi, is

hK
h
i
t
1 hðp1K

h
Þwi

z
2 hwbi1 S2hywi/f 5 0. (8)

The laterally averaged evolution equation for the

available potential energy P 5 b2/2N2, namely, h[Eq.
(6d)]b/N2i, is

hP i
t
1 hP wi

z
1 hwbi1 S2hubi/N2 5 0, (9)

and the mechanical energy E h 5K h 1P is described by

hE
h
i
t
1 hðp1E

h
Þwi

z
1 S2hub/N2 1 yw/f i5 0. (10)

Note that when nonlinear terms are ignored (u �=[ 0),

terms involving the advection of energy, that is, hK hwiz,
hP wiz, and hE hwiz, are absent from Eqs. (8)–(10).

The terms that quantify the exchanges between the

internal waves and fronts are those proportional to S2.

For the plane, inviscid internal waves described by Eq.

(7), no energy exchange occurs, since u and w are in

phase and in quadrature with y and b:

hubi5 hywi5 0. (11)

We now assume that two inviscid internal waves in-

terfere. We further assume that those two waves partici-

pate in a linear reflection under the surface of the ocean

and therefore share the same frequency v and horizontal

wavenumber k (Thorpe and Haines 1987; GT15). The

solution for the streamfunctionc (where u52cz andw5
cx) isc5 c0(cosu12 cosu2) and satisfiescjz505 0, where

un 5 kx 1 mnz 2 vt, m1 52k/a1
v , and m2 52k/a2

v .

Calculating u, y, w, and b from c and Eq. (7) yields

hywi
f

5
c2
0k

2v
(m

2
2m

1
) sin(m

2
2m

1
)z52

hubi
N2

, (12)

that is, although there is a local exchange of kinetic

energy between the front and the waves (S2hywi/f 6¼ 0),

there is an equal and opposite exchange of available

potential energy. Moreover, the local exchanges in-

tegrate vertically to zero. Therefore, inviscid internal

waves cannot induce a net energy exchange in the

problem considered.

3. Viscid internal waves in fronts

The previous section showed how the internal wave’s

inviscid polarization relations prevented energy ex-

change between the two-dimensional front and the

waves. Such conclusions do not hold if waves dissipate

and decay as they propagate. To illustrate this, and in

order to keep calculations simple, we choose a vertical

Laplacian as our frictional operator and lay out the basic

physics governing the net transfer of energy from fronts

to internal waves with steady amplitudes.

a. Wave solutions in the presence of friction

We assume that the perturbations are small enough

to neglect the nonlinear interactions between per-

turbation modes (i.e., u � = [ 0). We also consider a

frictional operator D [ n›2z, with n as both the vertical

viscosity and buoyancy diffusivity (i.e., the Prandtl

number is assumed equal to one), and a complex

perturbation p̂(x, z, t)5 ~p(z) exp[i(kx2vt)], such that

p5Re[p̂] (we define other quantities such as û and ~u

similarly). Under these conditions, frictional terms

D ~u, D ~y, and D ~b now occupy the right-hand sides of

Eqs. (6a), (6b), and (6d), respectively, to which we

apply the differential operator dzL 1, with dz [ d/dz

and L 1 [ iv1 nd2
z, yielding

ikL
1
~p
z
5 fL

1
~y
z
1L 2

1~uz
, (13a)

fL
1
~y
z
5 f 2~u

z
2 ikS2~u, and (13b)

L
1
~p
zz
5 S2~u

z
2 ikN2~u , (13c)

where ~wz and ~b have been systematically replaced by

2ik~u and ~pz, respectively, following the continuity

equation and hydrostatic balance. Substituting Eq. (13b)

into Eq. (13a), applying the operator defined as

S2dz 2 ikN2 to the result, and using Eq. (13c) to elimi-

nate ~u yields the following equation for ~p:

L
1
L

2
~p5C, with (14)

L
2
5 n2d6

z12invd4
z1( f 2 2v2)d2

z 2 2ikS2d
z
2k2N2 .

Equation L 2~p5 0 is the viscous equivalent of Eq. (3).

The term C is a depth-invariant quantity, which we ar-

bitrarily set to zero. Equation (14) has been derived for
~p. As Eq. (15) will show, using ~y or ~b would yield the

same result, but using ~u, ~w, or ~c would simply result in,

for example,L 2~u5 0, filtering out two solutions that are

allowed by the full equations of motion.

Looking for solutions of Eq. (14) in the form of

~p5 ~p0e
rz yields eight roots r, which we refer to as rn, n5

1, . . . , 8. In general, these roots can be written as rn 5
dn 1 imn, with dn and mn being real quantities. Two of
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these roots are equal to6
ffiffiffiffiffiffiffiffiffi
v/in

p
, while the other six roots

are computed numerically. For every set of parameters

used in this article, four dn are positive and four are

negative, corresponding to solutions that decrease and

increase with depth, respectively. Figure 2 shows, for a

representative set of parameters, the vertical wavelengths

2p/mn. The two inviscid vertical wavelengths 22pa1
v /k

and 22pa2
v /k, the only ones allowed in the absence of

viscosity, are also plotted for comparison. In particular,

Fig. 2 shows that no vertical wavelength is equal to zero

for any frequency displayed, which means that the sin-

gularity, predicted by the linear, inviscid theory for crit-

ical reflection is absent in the presence of viscosity, similar

to the classical case (e.g., Dauxois and Young 1999).

In the example shown in Fig. 2, m1, indicated by the

dashed purple line, corresponds to a wavenumber that

closely satisfies the dispersion relation of the inviscid

internal waves on the steep characteristic, while m2

(denoted by a solid yellow line) corresponds to a

wavenumber that satisfies the dispersion relation of the

inviscid internal waves on the shallow characteristic only

when viscous effects are weak, namely, when v is sig-

nificantly different than f. When v ’ f, the singular be-

havior on the shallow characteristic is prevented by

viscous effects, and the inviscid dispersion relationship is

not satisfied. In the case displayed in Fig. 2, k, 0 and the

steep characteristic corresponds to a depth-increasing

solution while the shallow characteristic corresponds

to a depth-decaying solution. This corresponds to the

configuration that we are considering, in which an in-

cident wave propagates upward and the reflected waves

propagate downward, with all waves decaying along

their direction of propagation. Figure 3 includes a

schematic of this configuration.

GT15 observed that during critical reflection, the re-

flected signal decays rapidly and resembles a standing

wave in the vertical. Figure 2 shows that forv5 f, 2p/m2,

namely, the wavelength of the shallow characteristic

solution that exists in the viscous limit, is mirrored by the

equal and opposite wavelength 2p/m3, drawn as a solid

orange line. When v5 f, not only do these two solutions

have equal and opposite vertical wavelengths, but the

real parts of their roots happen to be approximately

equal (not shown), allowing for a vertical standing

wave–like pattern.

The two wavenumbers m4 and m6 (the solid and

dashed blue lines in Fig. 2, respectively) correspond to

the roots r4 5
ffiffiffiffiffiffiffiffiffi
v/in

p
and r6 5 2r4. For these roots, the

time derivatives exactly cancel the viscous terms [i.e.,

L 1(e
rnz)5 0], and the corresponding equations of mo-

tion simplify to

2f~y1 ik~p5 0, 2~b1 r~p5 0, and (15a)

f ~u1 S2 ~w/f 5 0, S2~u1N2 ~w5 0, ik~u1 r ~w5 0. (15b)

According to the equations above, (~y, ~b, ~p) are de-

coupled from (~u, ~w). In fact, forRi 6¼ 1, Eqs. (15b) cannot

be satisfied simultaneously unless ~u5 ~w5 0. We are left

with the system of Eqs. (15a) whose solution is a geo-

strophic flow that oscillates at a near-inertial frequency.

Another wavenumber (m5; solid burgundy line) ap-

proximately scales as the oscillating viscous boundary

layer scale, namely, r5 ’
ffiffiffiffiffiffiffiffiffiffiffi
2iv/n

p
. It is mirrored by a

depth-increasing solution (m7; dashed cyan line).

Finally, an eighth root r8 (green dashed line) increases

with depth. This root does not play any role in the

configurations that we are considering.

b. Polarization relations

For simplicity, let us consider a single root rn and

its associated solution (~un, ~yn, ~wn, ~bn)5 ~pnP
n
v,ne

rnz,

with rn 5 dn 1 imn. The polarization vector Pn
v,n 5

(Pn,u
v,n, P

n,y
v,n, P

n,w
v,n , P

n,b
v,n) becomes, using Eqs. (13) as well

as the continuity and hydrostatic equations,

Pn,u
v,n 5

r2n(iv1 nr2n)

r
n
S2 2 ikN2

, Pn,w
v,n 5

kr
n
(iv1 nr2n)

i(r
n
S2 2 ikN2)

, and

(16a)

Pn,y
v,n 5

1

f

"
ik2

r2n(iv1 nr2n)
2

r
n
S2 2 ikN2

#
, Pn,b

v,n 5 r
n
. (16b)

FIG. 2. Vertical wavelengths of internal waves in a front with

(colored lines) and without (black crosses and circles) viscosity as

a function of frequency. While the vertical wavelength shrinks to

zero at v 5 f on the shallow characteristic (black crosses) in the

inviscid limit, it remains finite in the presence of viscous friction.

Colored lines correspond to wavelengths 2p/mn, where mn is the

imaginary part of the roots of Eq. (14), and n is indicated in the

legend as defined in section 3a. Richardson number Ri 5 3/2, and
the left axis is located at vm/f. Other relevant parameters are f 5
1024 s21, N/f 5 100, n 5 5 3 1025 m2 s21, and k 5 21.57 km21.

Solid (dashed) lines correspond to depth-decreasing (increasing)

solutions. The same color scheme is used in Fig. 5.
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The equations above show that the quadrature be-

tween u, w and y, b that was featured in Eq. (7) is lost,

allowing for a net exchange of energy between internal

waves and the front.

c. Viscous reflection against a horizontal boundary

We now consider the case of a reflection, which is

essentially a case of interfering, dissipating waves, with

the addition that critical and near-critical reflections

intensify viscous effects and generate solutions to Eq.

(14) that are not described by either the inviscid steep or

shallow characteristics. In the absence of nonlinear ef-

fects, fluid motions are a linear combination of the so-

lutions of Eq. (14):

(~u, ~y, ~w, ~b)5 �
8

n51

~p
n
Pn

v,n exp(rnz) , (17)

where Pn
v,n is the polarization vector for the solution

n [cf. Eqs. (16)], and ~pn is a weight corresponding to

the surface pressure anomaly associated with each

solution.

As explained previously, during a reflection, the only

depth-increasing solution that we have to retain is n5 1,

which corresponds to the incident wave for our config-

uration (e.g., Fig. 3). All signals created by the reflection

have to decrease with depth; thus, the three other depth-

increasing solutions (n 5 6, 7, 8) can be discarded. The

other solutions we retain are therefore the viscosity-

modified reflected wave (n 5 2) as well as the solutions

n 5 3, 4, 5. Constraining the coefficients ~pn in Eq. (17)

requires knowledge of the boundary conditions. In this

section, we consider the free slip and no normal flow

boundary conditions at the ocean surface:

d
z
~uj

z50
5 0, d

z
~yj

z50
5 0, and (18)

~wj
z50

5 0 and ~bj
z50

5 0. (19)

The boundary condition on the buoyancy in Eq. (19)

was chosen because it is imposed by the numerical code

we will use in section 4 (Winters et al. 2004) and cor-

responds to a fixed density gradient at the surface. This

is somewhat unphysical since one would expect density

perturbations to be advected along the boundary. As

we will discuss in section 5b, opting for a no flux

boundary condition on buoyancy changes the solution

only quantitatively and leaves our main conclusions

intact. Using Eqs. (16) and (17), Eqs. (18) and (19)

become

�~u
n
r
n
5 0, �~y

n
r
n
5 0, � ~w

n
5 0, � ~b

n
5 0, (20)

with ~un 5 ~pnP
n,u
v,n, and so on, and the sums run from n 5

1 to 5. These equations form a linear system of four

equations and four unknowns (~pn, n 5 2, . . . , 5) since

we can assume, without loss of generality, that the in-

coming wave is known and that ~p1 5 1. This system is

solved numerically. Figure 4 shows an example of the

buoyancy perturbation b and its components

Re[b̂n]5Re[~bn exp(rnz1 ikx)], n 5 1, . . . , 5, for a

critical reflection.

The excitation of these extra viscous solutions (i.e.,

with n . 2) is inherent to near-critical reflections. Be-

cause this case is where the focusing of the reflected

wave is the strongest, it is also where viscous effects are

the most active. We illustrate this fact in Fig. 5, which

shows the buoyancy coefficients ~bn normalized by the

coefficient of the incoming wave as a function of fre-

quency. The viscous solutions tend to zero away from

v 5 f, while n 5 2 (the reflected wave) is the only one

(apart for the incident wave n5 1) active for frequencies

away from critical reflection. As we will see next, the

energy exchanges between the front and the waves are

maximum where these viscous solutions are active.

d. Energy exchanges with the front

To quantify the energy exchange between the front

and the waves, we construct an energy budget by in-

tegrating Eq. (10) over an appropriate control volumeV.

FIG. 3. Schematic of the flow configuration used in this study:

frontal isopycnals (gray) and (left) geostrophic flow y, domain

boundaries, envelope of the wavemaker (introduced in section 4a,)

and wave field. The wave field in colored shades (field and color

axis range arbitrary) consists of an incident wave radiating from the

wave maker and the corresponding forward-reflected wave near

the surface, both subject to viscous decay as they propagate. The

incident wave corresponds to an internal wave with group velocity

directed along the steep characteristic a1
v1

(dashed line). The

control volumeV introduced in section 3c is sketched on top, along

with its lower boundary at z5 zV (horizontal dashed–dotted line).

The wavemaker introduced in section 4a is centered around z0 and

extends over a distance h0 (dotted horizontal lines), and its enve-

lope is drawn as the bell-shaped, dotted line.
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After preliminary steps in which we retrieve the weight

~pn of each solution by plugging Eq. (17) into Eqs. (20),

deducing u, y, w, and b, and then deducing the exchange

terms S2hubi/N2 and S2hywi/f , we do as follows:

1) define a volume V bounded at the top by the ocean

surface, from the bottom by a horizontal line located

at zV, and unbounded in the horizontal direction (see

Fig. 3);

2) compute the laterally averaged kinetic, available

potential and mechanical energy exchanges between

the perturbations and the front within V:

KX5
S2

f

ðzV
0

hywi dz , (21a)

PX5
S2

N2

ðzV
0

hubi dz and (21b)

EX5KX1PX; (21c)

3) compute the laterally averaged energy flux of the

incident wave through z 5 zV:

EF5 (1/2)Rehp̂
1
ŵ

1
*ij

z5zV
; (22)

4) and, finally, compute

RK 5KX/EF, (23a)

RP 5PX/EF and (23b)

RE 5RK 1RP , (23c)

hereinafter referred to as the ‘‘exchange ratios,’’ to

compare the rate of energy exchanged with the front

to howmuch energy is influxed by the incident waves.

For the calculation, we choose the following set of

parameters identical to those used in Figs. 4 and 5:

Ri 5 1.05, f 5 1024 s21 (typical of midlatitudes),

k 5 21.57 km21 (i.e., 2p/jkj 5 4 km), and N/f 5 100.

This set of parameters for the frontal flow is repre-

sentative of the Gulf Stream (see, e.g., Thomas et al.

2013). We also choose n 5 5 3 1025m2 s21 and

zV 5 225m.

Figures 6a and 6b display the various exchange ratios

and show that with this parameter set, waves extract

energy from the front during near-critical reflections,

over a band of frequencies that correspond to where the

reflected signal is strongly influenced by viscosity, as

shown by Figs. 2 and 5. In addition, Fig. 6a shows that

RP . 0, RK , 0 and jRP j. jRK j , (24)

meaning that potential and kinetic energy transfers have

opposite signs, with the transfer of potential energy from

the front to the perturbations being more important in

magnitude than the transfer of kinetic energy from the

perturbations to the front, resulting in a net transfer

of energy from the front to the perturbations. For

FIG. 4. Analytically computed buoyancy perturbation b/max(b)

for (a) a critical reflection (v 5 f ) and (b)–(e) its breakdown into the con-

tributions from the various roots rn, that is, Re[~bn exp(rnz1 ikx)]/max(b)

(all axes and color scales are identical). Note that the solution n5 4

had to be multiplied by 10 to be visible. This calculation has been

made with Ri5 1.05, f5 1024 s21,N/f5 100, n 5 53 1025 m2 s21,

and k 5 21.57 km21.

FIG. 5. Relative contributions of the individual roots to the total

solution as a function of frequency, measured using the solution

for the buoyancy perturbations at the surface. The quantities

Re( ~bn/ ~b1) are analytically computed and normalized by the surface

buoyancy perturbations induced by the incoming wave. The same

line colors and styles of Fig. 2 are used here. Both panels show the

same curves and only the axis ranges differ, highlighting the be-

havior for (top) v/f � 1 [(bottom) v/f 5 O(1)]. The same flow

parameters as in Fig. 4 are used. The number of roots that con-

tribute significantly to the total solution is largest for near-inertial

frequencies and near-critical reflection. Forv� f, only the incident

(n5 1) and reflected (n5 2) waves contribute to the solution, as in

the inviscid limit.
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frequencies away from f, however, RK and RP tend to

cancel; thus, the net mechanical energy exchange rate RE

goes to zero.

The energy extracted from the front is mostly dissi-

pated. To quantify this, we compute the volume integral

of the dissipation

ED5 n

ðzV
0

hu
h
� ›2zuh

1 b›2zb/N
2i dz (25)

and normalize it by the incident energy flux:

RD 5ED/EF, (26)

hereinafter referred to as the ‘‘dissipation ratio.’’ We

plot the result in Fig. 6c. Note that the sign conventions

for EX and ED are opposite.We see that when energy is

extracted from the front, the dissipation ratio can be

greater than one, especially for frequencies close to f.

Here, the amount of dissipation is therefore equal to the

dissipation of the incoming wave (i.e., the incoming en-

ergy flux), augmented by an amount of the same order,

whose source can only be energy extracted from the front.

The energy exchanges computed so far are the result

of several interactions between individual wave solu-

tions and do not give specific information as to whether a

few specific interactions carry most of the exchanges,

and if they do, which ones. We retrieve this information

by breaking down the exchange terms into their indi-

vidual components:

S2hubi/N2 5
1

2
�
n
�
q

Re
h
xP
nq(z)

i
, and (27a)

S2hywi/f 5 1

2
�
n
�
q

Re
h
xK
nq (z)

i
, (27b)

where all indices are summed from 1 to 5 and with:

xP
nq(z)5 (S2~u

n
~b
q
*/N2)fexp[(r

n
1 r

q
*)z]g , (28a)

xK
nq (z)5 (S2~y

n
~w
q
*/f )fexp[(r

n
1 r

q
*)z]g . (28b)

We then proceed to break down EX as well into the

energy exchanges EXnq due exclusively to the in-

teraction between the solutions n and q:

EX
nq

5
1

2
b
nq

ðzV
0

Re
h
xP
nq (z)1 xP

qn(z)1 xK
nq (z)1 xK

qn (z)
i
dz ,

(29)

where bnq5 1/2 if n5 q and 1 otherwise, in order to avoid

double counting the self-interaction terms. All of the

terms in Eq. (29) are plotted as a function of the indices n

and q in Fig. 7, which illustrates how the interactions be-

tween the different solutions act to exchange energy with

the front. The interaction between the n 5 3 and n 5 5

solutions dominates the net energy exchange, although

several other interactions play a nonnegligible role as well.

4. Numerical simulations

We now test our analytical model with numerical

simulations.

a. Numerical model and setup

We use a modification of the numerical model of

Winters et al. (2004), a pseudospectral, nonlinear, non-

hydrostatic code solving the Boussinesq equations of mo-

tion. We simulate cases of critical, forward, and backward

reflections, using the configuration schematized in Fig. 3

and vary S2 and the forcing frequency v1 in our numerical

simulations. Half of our experiments are fully nonlinear,

while the other half are linear yet retain the interactions

between the front and the waves [terms proportional to S2

in Eqs. (6)] but do not allow for wave–wave interactions.

FIG. 6. (a),(b) The rate of kinetic RK , potential RP , and me-

chanical RE energy extracted from the front and (c) the rate of dis-

sipation of energyRD , computed analytically in the control volumeV

shown in Fig. 3, all normalized by the energy flux of the incident

wave. For example, a value ofRP 511means that within the control

volume V, the front loses the available potential energy at the same

rate as the energy that is being fluxed in by the waves through the

base of V. Quantities are calculated with the same parameters as in

Fig. 4 but as a function of v/f. The same quantities are plotted in

(a) and (b), but the ranges of the vertical axes are different.
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Each experiment is identified with a label starting with

1, 2, or 4 corresponding toRi5 1.05, 2, or 4, respectively,

followed by the letter L (linear experiment) or N (fully

nonlinear experiment) and ending with three digits

corresponding to 10g, where g is a nondimensional

measure of the frequency defined as g 5 (v1 2 vm)/

(f2vm), withg5 0 forv5vm and g5 1 forv5 f, that is,

critical reflection. For example, the numerical experi-

ment labeled 1N017 corresponds to a fully nonlinear

experiment with Ri5 1.05 and g 5 1.7. To generate the

incidentwaves, we add a set of forcing terms,whichwe call

the wave maker, to the right-hand sides of Eqs. (6a)–(6d).

The wave maker is designed to generate a plane wave

that propagates upward on the steep characteristic, with

relative amplitudes and phases for each component that

satisfy the polarization relations of inviscid inertia–

gravity waves. Varying Ri and g induces variations in

wave quantities such as time scales, vertical propagation

speeds, vertical viscous decay scales, or nonlinear ac-

tivity. Therefore, the wave maker amplitude has to be

varied, as well as the domain heightH (together with nz,

the number of vertical levels), the time step Dt, and the

integration duration DT (normalized by Tv1
5 2p/v1,

the forcing period). Table 1 displays all values used in

the simulations, which we explain below, and we also

refer the reader to Fig. 3, which illustrates some of the

elements we are about to describe.

The domain has a horizontal length L 5 4 km, dis-

cretized into nx 5 256 points, which corresponds to a

horizontal resolution of Dx ’ 15.6m. The vertical res-

olution is the same for all experiments, namely, Dz ’
48.8 cm, but the depthH can take three different values,

namely, H 5 500, 1000, and 2000m, corresponding to

nz5 1025, 2049, and 4097 points, respectively. Becausewe

have not implemented any sponge layer to absorb

downward-propagating waves, the purpose of varying the

domain depth is to prevent waves from reaching the bot-

tom, reflecting off of it, and propagating back to the por-

tion of the domain that interests us, namely, the top 100m.

The Coriolis parameter is f5 1024 s21 and N/f5 100.

When varying Ri to 1.05, 2, and 4, we effectively vary the

background lateral gradient, that is, S2 ’ 9.8 3 1027,

7.1 3 1027, and 5.0 3 1027 s22, respectively. We ignore

the modification of the wave physics by the horizontal

component of Earth’s rotation vector (Colin de Verdière
2012; Whitt and Thomas 2013), as they are negligible for

the parameter regimes that we are considering (appendix

B of GT15).

FIG. 7. Relative contributions of each individual exchange ratio

EXnq toEX,with n and q indicated on the vertical axis and normalized

by their sum, namely, EX.A positive value represents a net transfer of

energy away from the front, induced solely by all the interactions

between solutions indexed by n and q, integrated vertically between

the surface and the bottom of the control volume at z 5 zV.

TABLE 1. List of parameters used in the numerical experiments.

X is a placeholder in the experiment label for N or L, and the values

of v1/f are rounded.

Label v1/f A (m2 s23) H (m) Dt (s) DT/Tv1

1X001 0.30 4.8 3 1029 500 50 20

1X003 0.45 9.0 3 1029 500 50 20

1X005 0.61 1.3 3 1028 500 50 20

1X008 0.84 2.1 3 1028 500 50 20

1X010 1 2.8 3 1028 500 50 20

1X013 1.2 4.2 3 1028 500 50 20

1X015 1.4 5.5 3 1028 500 50 32

1X017 1.6 7.0 3 1028 1000 50 25

1X020 1.8 9.9 3 1028 1000 50 25

1X030 2.6 2.6 3 1027 2000 25 20

1X036 3.0 4.3 3 1027 2000 10 20

1X050 4.1 1.1 3 1026 2000 5 20

2X002 0.77 1.9 3 1029 500 50 30

2X003 0.80 2.6 3 1029 500 50 30

2X005 0.85 4.1 3 1029 500 50 30

2X008 0.94 6.9 3 1029 500 50 20

2X010 1 9.1 3 1029 500 50 20

2X015 1.2 1.6 3 1028 500 50 20

2X020 1.3 2.5 3 1028 500 50 20

2X025 1.4 3.7 3 1028 1000 50 20

2X030 1.6 5.1 3 1028 1000 10 20

2X035 1.7 6.8 3 1028 1000 10 20

2X050 2.2 1.4 3 1027 1000 5 20

2X078 3.0 4.1 3 1027 1000 5 20

2X140 4.8 2.1 3 1026 2000 5 20

4X003 0.91 1.2 3 1029 500 50 60

4X005 0.93 1.6 3 1029 500 50 50

4X008 0.97 2.1 3 1029 500 50 50

4X010 1 2.5 3 1029 500 50 30

4X015 1.1 3.7 3 1029 500 50 30

4X020 1.1 5.2 3 1029 500 50 25

4X030 1.3 9.5 3 1029 500 50 20

4X040 1.4 1.6 3 1028 500 10 20

4X050 1.5 2.4 3 1028 500 10 20

4X070 1.8 5.0 3 1028 1000 10 20

4X100 2.2 1.1 3 1027 1000 10 20

4X200 3.6 6.7 3 1027 2000 5 20

4X300 4.9 2.2 3 1026 2000 5 20
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The domain is periodic in the x direction, and the

following boundary conditions are imposed:

wj
z50

[ 0, (30a)

(u
z
, y

z
1 y

z
)j
z50

[ (0, 0)0 y
z
j
z50

[2S2/f , and (30b)

bj
z50

[ 0. (30c)

The condition for y requires a surface stress in order to

compensate for what Thomas and Rhines (2002) call the

‘‘geostrophic stress,’’ namely, the stress induced by the

thermal wind shear. Our implementation of this stress is

identical to that ofGT15. Note that this stress was absent

in section 3 since we were only interested in oscillating

solutions.

The frictional operator isD 5 n›2z 2 n4›
4
x, with n5 53

1025m2s21 for the vertical viscosity and n45 5 000m4 s21

for the horizontal biharmonic hyperviscosity. The

terms n and n4 are the same for both the momentum

and buoyancy. The only purpose of the horizontal

biharmonic operator is to keep the nonlinear simula-

tions stable and it does not play any prominent role in

the dynamics.

The implementation of the wavemaker is described in

detail in GT15, the key characteristics of which we

summarize here. The wave maker consists of the fol-

lowing set of terms that we add to the right-hand sides of

Eqs. (6a) and (6b):

(F,F
4
)5F(z, t)RefP1

v1
exp[i(k

1
x1m

1
z2v

1
t)]g ,

(31)

where k1 52a1
v1
m1 522p/L and F(z, t)5 A[12

exp(2ft)] exp[2(z2 z0)
2/h2

0]. The amplitude A is ad-

justed for each experiment so as to ensure that the

incident wave has anO(0.1) Froude number jm1U1/Nj,
with U1 as the amplitude of the along-x velocity of the

incident wave. Finally, z0 5 2250m and h0 5 60m.

The code uses a third-order Adams–Bashforth

time-stepping scheme with a time step Dt and a du-

ration of integration DT varying for each experiment

(cf. Table 1). As explained in Winters et al. (2004),

the code does not have a pressure solver since p is

algebraically computed and substituted into the

right-hand side forcing terms of the momentum

equations.

b. Linear results

We run a set of simulations for which all wave–wave

interactions are prohibited (u � = [ 0) that allow us to

test the analytical model of section 3 directly. We apply

the procedure described in section 3d to our numerical

experiments, namely, we calculate the exchange ratio

RE [Eq. (23c)] as a function of v1 and Ri. To compute

EF [Eq. (22)], we isolate the incident wave by use of a

filter in time and space (see GT15, their appendix C, for

details). Our filter in time is made over two incident

wave periods. Increasing this duration does not gen-

erate meaningful differences. We also average KX, PX,

EX, and ED [Eqs. (21) and (25)] over the same

duration.

We plot RE in Fig. 8a and compare it with the pre-

diction provided by our analytical model. Except for

the lowest frequency simulated in the Ri 5 1.05 case,

and a slight overestimation of the peak value of RE in

general, the results from the numerical and analytical

solutions agree quite well. The enhancement of the

exchanges around the critical reflection is stronger for

low Ri since critical reflections are stronger for lower

Ri (GT15).

We also verify that most of the energy extracted from

the front by the perturbations is dissipated. Comparing

Figs. 8a and 8b shows that whenever RE is nonzero, RD

[Eq. (26)] follows a very similar trend. Near critical re-

flection in particular, all the wave energy that propa-

gated from below as well as the energy extracted from

the front, is dissipated. For example, we recover the fact

that for Ri 5 1.05, maxðRD Þ’ 2.

5. Discussion

Now that our analytical and numerical models have

been validated, we can further explore parameter

space to assess the robustness of the transfer of en-

ergy from balanced motions to waves near critical

reflection.

a. Influence of the viscosity

One quantity, whose value is hard to constrain in the

ocean, is the viscosity. To study the sensitivity of the

energy ratios to the value of the viscosity, we now

compute the analytical solution for RE when n is varied

from 1026 (molecular viscosity) to 1023m2 s21.

Figure 9 shows that even if the viscosity is varied by

three orders of magnitude, our main conclusions still

hold both qualitatively and quantitatively, namely,

critical and near-critical reflections induce energy

transfers from the front to the waves and the maximum

of RE is of order one. Noticeable differences are that

the lower the viscosity, the more peaked RE is, in-

dicative of a smaller band of frequencies in which vis-

cous effects are important. As n increases, the location

of the peak of RE shifts toward higher frequencies but

remains near f.

There is a simple heuristic explanation as to why

varying n by orders of magnitude induces comparatively
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modest modifications ofRE . Reducing n does not reduce

the magnitude of the viscous dissipation because it also

increases the intensity of the shear layers. Consequently,

the dissipation occurs over a shorter depth and much

more intensely since the amount of energy that is dissi-

pated has to remain at least equal to the incoming en-

ergy flux at critical reflection.

b. Influence of the boundary condition on the
buoyancy

We now change the boundary condition on the

buoyancy [Eq. (20d)] to

›
z
bj

z50
5 0, i.e. �

5

n51

~b
n
r
n
5 0, (32)

namely, a no flux boundary condition in which the iso-

pycnals are free to be advected horizontally along the

ocean surface. Figure 10 shows that changing the

boundary condition leads to quantitative differences in

the results; however, the order of magnitude of the en-

ergy exchange is preserved as well as its location and

approximate shape of the RE (v1) curve. Therefore, our

conclusions are not especially sensitive to the boundary

condition on b.

c. Nonlinear effects

When nonlinear terms are fully restored and wave–

wave interactions are allowed (u � = u 0), the exchange

ratios RE are modified to different degrees depending

on the frequency, as can be seen in Fig. 11. Specifically,

the differences are strong for forward reflections, while

linear and nonlinear backward reflections show essen-

tially the same behavior. We recall from section 4a that

jm1U1/Nj5O(0. 1), that is, the incident wave field has a

small but finite amplitude. Table 1 contains all the actual

amplitudes.

In GT15, we found that forward reflections differ

qualitatively from backward reflections in that they fa-

vor nonlinear generation of higher harmonics (viz.,

waves of frequencies that are multiples of the wave

maker frequency v1). Therefore, forward reflections can

trigger a turbulent cascade, even for low incident wave

amplitudes. We illustrate these differences in Fig. 12.

Linear and nonlinear backward reflections seen in

Figs. 12a and 12b are indeed very similar, which explains

whyRE is similar in both cases in Fig. 11. Figures 12c and

12d show that for critical reflection, nonlinear effects

already significantly modify the flow and generate a

signal that transports energy downward outside of V,

away from the surface. This flow is described in great

detail in GT15; its frequency content is mostly discrete

and localized around frequencies that are multiples of

the forcing frequency f. Each of these individual fre-

quencies corresponds to a signal that is nonlinearly

forced by nonresonant triads instead of being in the form

of a freely propagating internal wave. Finally, in

Figs. 12e and 12f, the differences between forward re-

flections are even more striking, with the linear case

merely consisting of the superposition of an incident

and a reflected wave, while the nonlinear case shows a

turbulent field.

Nonlinear effects and turbulence can act tomodifyRE

in different ways. For example, by generating waves

with higher frequencies, and hence larger vertical group

FIG. 8. As in Fig. 6, but for (a) exchange ratios RE and

(b) dissipation ratiosRD as functions of v1/f and for three different

Richardson numbers Ri, diagnosed from linear simulations

(markers) and analytical solutions (dashed lines), as calculated in

sections 3c and 3d. The vertical dashed–dotted lines mark the

minimum frequency vm for each Ri.

FIG. 9. Sensitivity of the exchange ratio RE to the viscosity n,

demonstrated with four values of n. Note that the depth of the

control volume V used in the calculation is zV 5 250m instead of

225m so that V encompasses the entire extent of the viscous so-

lutions. The parameters used in the calculation are as in Fig. 4,

except for the viscosity.
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velocities, more energy can be expelled out of the

control volume V, preventing waves from exchanging

energy with the front and therefore reducing the mag-

nitude of RE . This is clearly demonstrated in the non-

linear critical reflection simulation (1N010), in which

the downward energy flux through z 5 zV associated

with the signal visible in Fig. 12d was calculated to be

hðp1E hÞwiz5zV
/EF2 1520:286, with EF being cal-

culated using the dynamic pressure p1E h associated

with the incident wave [see Eq. (10)]. This number is

close to the20.247 reduction inRE from 1L010 to 1N010

visible in Fig. 11.

On the other hand, the turbulence visible in Fig. 12f

exhibits a continuum of spatial scales, which range from

the size of the domain to the viscous dissipation scale.

These small-scale structures propagate more slowly, are

dissipated over shorter time scales, and therefore ex-

change more energy with the front. This is to be com-

pared with the fast-propagating reflected waves of

Fig. 12e, which leave the control volume V without sig-

nificantly exchanging energy with the front. We can see

in Fig. 11 that for v1 . 1.6f, RE is higher in nonlinear

calculations, which suggests that in these cases, wave

turbulence extracts energy from the front.

6. Conclusions

Near-inertial waves, propagating upward in a geo-

strophic front experience near-critical reflections when

encountering the ocean surface (GT15). Viscosity mod-

ifies the polarization relations of steady-amplitude in-

ternal waves and allows for energy exchanges with the

geostrophic front in nontrivial ways. In the present

study, a vertical Laplacian was used as the frictional op-

erator; other frictional operators will induce an energy

exchange, albeit in a way that has to be quantified on a

case-by-case basis. When nonlinear wave–wave in-

teractions can be ignored, the reflected signal is described

not by one reflected wave but by four solutions of the

viscous equations of motion. The superposition of these

solutions and their interactions leads to a net exchange of

energywith the front, especially when thewave frequency

is near critical. Away from critical reflection, waves sim-

ply reflect off the surface without experiencing such dis-

sipative effects. Varying the viscosity and boundary

conditions has a quantitative impact on the energy ex-

changes but does not change these conclusions. This ex-

tractionmechanism is specific to frontal critical reflection,

as opposed to classical critical reflection on a slope where

there is no background flow to extract energy from.

When nonlinear wave–wave interactions are allowed,

these linear conclusions hold well for backward re-

flections (v1, f ), since triadic resonances are not favored

by such configurations (GT15). For this reason, this

conclusion is likely to hold even for high wave ampli-

tudes, provided that the incident or reflected waves are

not individually unstable. On the other hand, when the

reflections are forward, nonlinear wave–wave interactions

can be close enough to triadic resonances to trigger a

turbulent cascade, which strongly modifies the conversion

of energy from geostrophic to ageostrophic motions.

Possible explanations include the generation of high-

frequency waves that propagate energy away from the

surface and possibly away from the front and the gener-

ation of highly dissipating small scales that propagate

more slowly, are dissipated more quickly, and therefore

exchange more energy with the front. Because our non-

dimensional wave amplitudes are relatively weak, this

conclusion is once again likely to hold for a broad range of

wave amplitudes, provided that they are large enough to

be detectable but small enough to be stable.

The asymmetry between forward and backward re-

flections highlights the fact that nonlinear effects fea-

tured in forward reflection are crucial elements to the

dissipation of frontal geostrophic energy. However, the

FIG. 10. Sensitivity of the exchange ratio RE to the form of the

boundary condition imposed on the perturbation buoyancy field at

the surface, namely, bjz50 5 0 (dashed) and ›zbjz50 5 0 (solid). The

parameters used in the calculation are the same as in Fig. 4.

FIG. 11. As in Fig. 8a, but that the solid and dashed lines now

represent the exchange ratio diagnosed from nonlinear (N) and

linear (L) experiments, respectively. Namely, the dashed lines are

the same as the crosses in Fig. 8a.
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two-dimensional nature of our experiments excludes

other nonlinear effects that could influence wave-front

energy exchanges. Further numerical work is therefore

needed to quantify the role of, for example, three-

dimensional frontal flows with strain and vertical vor-

ticity that can significantly affect near-inertial waves

(see Kunze 1985; Thomas 2012), three-dimensional

(oblique) reflection (see, e.g., Thorpe 1999a,b, for clas-

sical critical reflection), or wave breaking, which is

essentially a three-dimensional phenomenon (e.g.,

Lelong and Dunkerton 1998; Remmler et al. 2013).

By definition, critical reflection at fronts occurs im-

mediately under the surface, where mixed layers are

usually found. The question arises as to whether our

results would still hold in the presence of a mixed layer.

In the absence of hydrodynamic instabilities in the

boundary layer, such weakly stratified regions near the

surface are necessarily characterized by low Ri, which

would presumably enhance the energy extraction from

the fronts. But mixed layers are also dynamically active

and critical reflection could be significantly modified by

instabilities such as symmetric instability (SI) when

0,Ri# 1 (Haine and Marshall 1998) or mixed layer

baroclinic instability (MLI) when Ri. 1 (Boccaletti

et al. 2007). A common way to classify these instabilities

is to characterize their associated energy transfers: SI

extracts kinetic energy from the front, while MLI ex-

tracts potential energy. Our mechanism both extracts

potential energy from and injects kinetic energy into the

front, while consistently inducing a net extraction of

energy from the front to ageostrophic motions. A major

difference with SI or MLI, however, is that our

FIG. 12. Snapshots of the cross-plane vorticity uz 2 wx in a few experiments with Ri 5 1.05,

highlighting small-scale structures for (left) linear runs and (right) nonlinear runs and for (top)

backward reflection (g 5 0.3 or v1/f ’ 0.45), (middle) critical reflection (g 5 v1/f 5 1), and

(bottom) forward reflection (g 5 3.6 or v1/f ’ 3.0). All color ranges are from 21022 to

11022 s21, and the snapshots are taken at time t5 20Tv1
. The horizontal dashed lines are lo-

cated at z 5 zV, the lower bound of the control volume V.
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mechanism does not feature tracer transport at leading

order. Indeed, internal waves are oscillations that, to the

first order, do not advect tracers in a time-integrated

sense. The wave-induced modification of the back-

ground flow that could arise from energy exchange

during critical reflection could in turn rearrange scalar

distributions of, for example, potential vorticity or nu-

trients but is only a second-order effect.

Relaxing the rigid-lid boundary condition could

also introduce new and relevant physics. Direct free-

surface effects are likely to be negligible: sea surface

slopes due to geostrophic pressure gradients are

usually much smaller than the O(1%) isopycnal

slopes of strong fronts and the steep characteristic

for v 5 f, while surface gravity waves oscillate too

fast to directly affect such processes. However, in-

direct effects could be at play such as direct injection

of turbulence in the dissipative boundary layer or

Langmuir circulations generated by the surface

gravity waves. As shown by, for example, Chini and

Leibovich (2003) and Polton et al. (2008), the latter

indeed have the potential to directly interact with

internal waves and could once again modify the

subsurface processes through which near-inertial

waves dissipate their energy.

The present mechanism bears some resemblance with

spontaneous wave generation [see the review of Vanneste

(2013)], namely, it is also a wave–mean flow interaction

problem in which waves remove energy from the geo-

strophic flow. Nonetheless, these two extraction mech-

anisms are very distinct in nature: while spontaneous

generation depends on the Rossby number and results

from the free evolution of a geostrophic flow, extraction

due to critical reflection depends on the Richardson

number of the geostrophic flow (Fig. 8) and is driven

by a vertical energy flux associated with the inertial

motions, which are imposed rather than develop

spontaneously.

The present mechanism also bears some re-

semblance with the geostrophic to near-inertial

transfer mechanisms of Gertz and Straub (2009) and

Taylor and Straub (2016). Like us, they address in-

teractions with externally forced near-inertial waves

as the dominant mode of action of the near-inertial

wave field on the geostrophic flow, rather than spon-

taneous loss of balance. However, their mechanisms

act on gyrelike scales, the transfers happen mostly at

the mesoscale rather than at the submesoscale (Taylor

and Straub 2016), and it is nondissipative Reynolds

stresses that carry out the transfers. Also, their nu-

merical simulations lack some of the elements that

could generate near-inertial waves propagating at

the steep characteristic, as discussed in GT15. For

example, they do not feature bottom topography that

is small enough to radiate lee waves (Nikurashin and

Ferrari 2010) nor internal tides that could turn near-

inertial if propagating toward high latitudes (Winters

et al. 2011). The two mechanisms are therefore com-

plimentary but distinct.

Finally, the recent study of Whitt and Thomas (2015)

describes a distinct energy exchange mechanism in

which inertial motions extract kinetic energy from

the lateral shear of geostrophic flows, as opposed to the

mechanism described in the present article, where the

source of ageostrophic energy is dominantly the po-

tential energy extracted from the lateral density gra-

dient. For the mechanism of Whitt and Thomas (2015),

the important parameter is the Rossby number and

extraction scales with the wind work on inertial mo-

tions, while for critical reflection, the important pa-

rameter is the Richardson number and the extraction

scales with the energy flux associated with the inertial

motions. In the ocean, this energy flux can also scale

with the wind work on inertial waves as well but not

solely. A few alternatives discussed by GT15 include

internal tides propagating poleward on a b plane that

turn inertial when reaching their critical latitude

(Winters et al. 2011), radiation of inertial waves by

flows undergoing rapid evolution such as geostrophic

adjustment (e.g., Blumen 2000; Plougonven and Zeitlin

2005) or frontogenesis (Shakespeare and Taylor 2014),

and lee-wave instabilities radiating upward-propagating

inertial waves (Nikurashin and Ferrari 2010; Rosso

et al. 2015).
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