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In a balanced oceanic front, the possible directions of the group velocity vector
for internal waves depart from the classic Saint Andrew’s cross as a consequence
of sloping isopycnals and the associated thermal wind shear. However, for waves
oscillating at the Coriolis frequency f , one of these directions remains horizontal,
while the other direction allows for vertical propagation of energy. This implies the
existence of critical reflections from the ocean surface, after which wave energy,
having propagated from below, cannot propagate back down. This is similar to the
reflection of internal waves, propagating in a quiescent medium, from a bottom that
runs parallel to the group velocity vector. We first illustrate this phenomenon with a
series of linear Boussinesq numerical experiments on waves with various frequencies,
ω, exploring critical (ω = f ), forward (ω > f ), and backward (ω < f ) reflections. We
then conduct the nonlinear equivalents of these simulations. In agreement with the
classical case, backward reflection inhibits triadic resonances and does not exhibit
prominent nonlinear effects, while forward reflection shows strong generation of
harmonics that radiate energy away from the surface. Surprisingly though, critical
reflections are associated with oscillatory motions that extend down from the surface.
These motions are not freely propagating waves but instead take the form of a cluster
of non-resonant triads which decays with depth through friction.
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1. Introduction

The winds and tides inject kinetic energy into the ocean’s internal wave field
(Ferrari & Wunsch 2009). Part of this kinetic energy can be converted to background
potential energy when internal waves break and mix density. This process is thought
to play an essential role in resupplying the potential energy lost by the meridional
overturning circulation (Wunsch & Ferrari 2004). Knowledge of why and where
internal waves break is thus needed to understand how the ocean’s global energy
balance is closed. It is thought that the ocean’s boundaries are especially effective at
converting large-scale internal waves into mixing-prone internal waves (for a review,
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see Garrett & Kunze 2007). This fact is explained by the peculiar propagation
properties of internal waves.

Internal waves propagate in fluids with stable stratification and/or that rotate. While
the restoring force in the latter is quantified by the Coriolis frequency f , in the former
it is quantified by the Brunt-Väisälä, or buoyancy, frequency N = √−(g/ρ0)∂zρ,
where g is the gravitational acceleration, ρ0 a constant reference density, and ρ the
unperturbed density field. The dispersion relation of internal waves in such a fluid
is ω2 = N2 sin2 β + f 2 cos2 β, where ω is the wave frequency and β is the angle
of the group velocity vector with respect to the horizontal plane. Following this
dispersion relation, waves radiated from a point source oscillating at a frequency
ω, with | f | < ω < N, in a fluid confined in a vertical plane will propagate in
the four directions allowed by the above dispersion relation, forming a symmetric
Saint-Andrews-cross pattern (Mowbray & Rarity 1967).

As first noted by Phillips (1966), the form of the dispersion relation leads to a
peculiar wave reflection at a wall inclined with respect to the gravity vector: because
ω is preserved upon reflection, the angle β is preserved as well. Three scenarios for
such reflections exist: (i) the wall is shallower than β, in which case the waves keep
their horizontal propagation direction, but reverse their vertical propagation; (ii) the
wall is steeper than β, in which case the opposite happens; (iii) the wall angle is equal
to β and the wave energy is focused to a line, which represents a singularity of the
linear, inviscid equations of wave propagation. The latter is called ‘critical reflection’
and divides the frequency parameter space into two regimes, (i) and (ii) being most
often referred to as ‘sub-’ and ‘super-critical’, respectively, although unfortunately,
some authors use the opposite convention. Sub- and super-critical reflections are
also less frequently described as ‘forward’ and ‘backward’, respectively (e.g. Javam,
Imberger & Armfield 1999). This refers to the continuity or reversal of the wave
propagation in the horizontal, respectively, and will be used throughout this article.
Critical and near-critical reflections induce wave focusing, which eventually leads to
enhanced dissipation.

The properties of internal waves described above form what we will call ‘classical’
reflection. When the horizontal projection of the Earth’s rotation vector cannot be
ignored, i.e. the ‘non-traditional’ case, as reviewed by Gerkema et al. (2008), for
example in weakly stratified parts of the deep ocean, even horizontal fluid boundaries
can host similar effects. The horizontal/vertical symmetry is broken by the tilted
rotation vector of the Earth, and pure inertial waves (ω= f ) either can have β = 0, as
in the classical case, or can propagate at an angle with respect to the horizontal. As a
consequence, downward-propagating inertial waves can experience critical reflections
from flat bottoms (Gerkema & Shrira 2005; Winters, Bouruet-Aubertot & Gerkema
2011). More generally, non-traditional effects modify the geographic distribution of
critical slopes for near-inertial waves (NIWs), and increase the overall probability of
critical reflections occurring (Gerkema & Shrira 2006).

As previously noticed by Whitt & Thomas (2013), a strong analogy can also be
drawn between the propagation of NIWs in the non-traditional case and of NIWs
in fronts. An ocean front is a sharp feature consisting of a large horizontal density
gradient and currents with strong vertical shear. This shear imparts a horizontal
component to the absolute vorticity of the fluid, analogous to the non-traditional
case, and hence allows similar wave physics. Frontal currents are characterized by
Rossby and Richardson numbers that are order one and thus categorize fronts as
sub-mesoscale structures, for which the geostrophic balance is less dominant than
for the mesoscale eddy field. As a consequence, vertical velocities found in fronts
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tend to be an order of magnitude larger than those found in mesoscale structures,
which makes fronts particularly important for the sequestration of gases and heat
in the ocean and for supplying nutrients to fuel the growth of phytoplankton (see
e.g. Thomas, Tandon & Mahadevan 2008; Klein & Lapeyre 2009). Recent theoretical
developments have highlighted the role of internal waves in sub-mesoscale and frontal
dynamics (Thomas 2012; Whitt & Thomas 2013; Thomas & Taylor 2014). This work
builds on of previous studies that have found that energy in NIWs accumulates near
ocean fronts (e.g. Kunze & Sanford 1984; Kunze, Schmitt & Toole 1995; Marshall
et al. 2009).

The combination of vertical and lateral density gradients at a front results in sloping
isopycnal surfaces, which once again breaks the vertical/horizontal symmetry found
in the classical theory. At first glance, the situation might appear analogous to the
case where the direction of the gravity vector is tilted at an angle, approximately
equal to the background isopycnal angle. For this scenario, the internal wave’s Saint-
Andrews-cross pattern would tilt with the same angle, and interestingly, horizontal
boundaries like the ocean surface would become equivalent to a sloping wall in the
classical case. To be complete however, one has to take into account the additional
effect of the horizontal vorticity induced by the thermal wind shear, which further
modifies propagation angles. Nonetheless, this simple analogy leads one to expect the
existence of frontal equivalents of classical forward and backward reflection, separated
by a critical reflection.

In this article, we will demonstrate that this is the case. The linear theoretical
basis for this finding is described in § 2. In order to illustrate the theory and go
beyond inviscid, linear arguments, we conduct non-hydrostatic, Boussinesq numerical
experiments and their configurations are described in § 3. In § 4, we conduct
linear numerical simulations which illustrate the basic physics of the phenomenon.
Near-critical, nonlinear NIW reflections are then studied numerically in § 5, followed
by their critical equivalent for pure inertial waves in § 6. Conclusions and further
insights about the implications for more realistic oceanic fronts are then presented in
§ 7.

2. Reflection of near-inertial waves in a front from a horizontal boundary
2.1. Frontal flow

We consider an idealized ocean front in geostrophic and hydrostatic balance,
characterized by a stable vertical density gradient as well as a horizontal density
gradient in thermal wind balance. We orient the Cartesian coordinate axes such
that z is the vertical coordinate, y the along-front direction and x the (horizontal)
across-front direction. We will hereafter neglect all along-front variations (∂y ≡ 0),
which is sufficient to capture the basic physics at play. We can then write the density
field as

ρ(x, z, t)= ρ0 + ρ(x, z)+ ρ ′(x, z, t), (2.1)

where ρ0 is a reference density, ρ0 + ρ the frontal density field in thermal wind
balance, and ρ ′ the density perturbation. Because the ocean is usually characterized by
ρ+ ρ ′� ρ0, we use the Boussinesq approximation, under which the density gradients
are measured by the quantities (S2, N2) = −g(ρx, ρz)/ρ0, where lettered subscripts
denote partial derivatives. We further assume that S and N are constant in space and
time. Geostrophy implies the existence of a thermal wind v(z) in the along-front (y)
direction such that

vz = S2/f (thermal wind balance). (2.2)
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Because oceanic fronts are typically much narrower than O(100 km), we take f to be
constant. Finally, we associate the thermal wind shear with a Richardson number Ri:

Ri=N2/|vz|2 = f 2N2/S4 (2.3)

and assume that Ri> 1, so that the flow is stable to symmetric instability (Haine &
Marshall 1998).

The features described so far will hereafter be referred to as the ‘frontal flow’. To
put some numbers on the parameters of the frontal flow, we draw our inspiration from
the North Wall of the winter-time Gulf Stream, where Thomas et al. (2013) report
values of S2 ≈ 5 × 10−7 s−2. The North Wall of the Gulf Stream consists of a mid-
latitude ( f ≈ 10−4 s−1), strong front characterized by Ri≈ 1, which implies N2≈ 2.5×
10−5 s−2 and that the isopycnal slope is S2/N2≈ 2 %. In this article, we use a similar
value (S2/N2 ≈ 1 %, cf. § 3.1).

2.2. Internal wave propagation in a front
We now consider perturbations relative to the frontal flow, that are small enough
to be well described by the linearized Boussinesq equations. In the present section,
we also consider NIWs, namely perturbations of low enough frequency for vertical
accelerations to be neglected and for which the hydrostatic approximation can be
used:

uh
t + f ẑ× u+ (S2/f )wŷ− bẑ+∇p= 0, (2.4a)

bt + S2u+N2w= 0, (2.4b)
∇ · u= 0. (2.4c)

Here, uh = (u, v, 0) is the horizontal velocity perturbations vector and its Cartesian
components, u= (u, v,w) the full perturbations velocity vector, ŷ the along-front unit
vector (we define x̂ and ẑ similarly), b=−gρ ′/ρ0 the buoyancy fluctuations and p the
scaled pressure.

It is possible to reduce the above system of equations to a single equation using the
perturbation stream function ψ , defined by (u,w)= (−ψz, ψx), yielding the Eliassen–
Sawyer equation (cf. e.g. Mooers 1975; Plougonven & Zeitlin 2005; Whitt & Thomas
2013): (

f 2 + ∂tt
)
ψzz − 2S2ψxz +N2ψxx = 0. (2.5)

Let us now assume a perturbation in the form of a plane wave, namely ψ is
proportional to exp(i(−αmx+mz−ωt)), where k = (−αm, 0, m) is the wavevector.
Substituting in (2.5) yields the hydrostatic dispersion relation of internal waves in
fronts:

ω2(α)= f 2 + α2N2 + 2αS2. (2.6)

The equation above differs from the standard dispersion relation by the term
proportional to S2. We summarize here a few implications of this new additional
term and refer readers to Mooers (1975) and Whitt & Thomas (2013) for further
details and derivations. One implication is that the minimum wave frequency allowed
by the dispersion relation, ωm, is lower than f , namely:

ωm = f
√

1− Ri−1
, (2.7)
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FIGURE 1. Normalized characteristic slopes α+ (solid) and α− (dashed) as functions of
frequency, for different values of Ri. Recall that Ri→∞ corresponds to the classical,
S2 = 0 case. Hatched lines mark the α = 0 and ω= f locations.

which is obtained when α=−S2/N2, i.e. when the phase lines, whose slopes are equal
to α, run parallel to isopycnals and the wavevector points perpendicular to isopycnals.
Another consequence is that as |S2| increases, the classical Saint-Andrews-cross
radiation pattern gives way to an inclined cross and we now have two characteristics
with different inclinations α+ω and α−ω , hereafter referred to as steep and shallow,
respectively:

α±ω =−
S2

N2
∓
√
ω2 −ω2

m

N2
=− f

N

(
1√
Ri
±
√

1
Ri
+ ω

2

f 2
− 1

)
. (2.8)

We plot values of α± as a function of ω/f in figure 1 for a few values of Ri (see
also figure 8 of Whitt & Thomas (2013)).

Differentiating equation (2.6) in wavenumber space yields the group velocity:

cg =
(

cx
g

cz
g

)
=−αN2 + S2

mω

(
1
α

)
, (2.9)

which shows that wave energy propagates along vectors of slope α, namely along
characteristics. Contrary to the classical case, the radiation diagram of internal waves
cannot be split into four quadrants separating upward- and downward-, leftward-
and rightward-propagating waves anymore. Nor is it sufficient to simply rotate the
four quadrants to align their boundaries along iso- and diapycnal directions, since
the presence of the flat ocean surface means that the up–down, left–right symmetry
remains relevant to our problem. The radiation diagram is now divided into eight
sectors, illustrated in figure 2. As in the classical case, k and cg are perpendicular.
Their respective projections onto the tangent of the background isopycnals, which is
parallel to the vector ı̂ = (1,−S2/N2), are:

k · ı̂ =−
(
α + S2

N2

)
m and cg · ı̂ =−

(
α + S2

N2

)(
1− αS2

N2

)
N2

mω
(2.10a,b)

which, like in the classical case, have the same signs because for NIWs under frontal
oceanic conditions, |αS2/N2| � 1.
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FIGURE 2. (Colour online) Configurations of group velocities (light grey arrows, red
online) and wavevectors (dark grey arrows, blue online) for all possible wave propagation
directions, under the hydrostatic approximation. Black lines (solid and dashed) mark the
horizontal and vertical directions. Grey solid lines mark the background isopycnal slope
−S2/N2, while grey dashed lines mark the direction perpendicular to it. The isopycnal
slope has been exaggerated for illustrative purposes. Each sector is identified in the inner
circle of the figure (e.g. (1a)).

The present study revolves around the particular case where ω= f , for which (2.6)
becomes:

αf
(
αf N2 + 2S2

)= 0. (2.11)

As is obvious from the above equation and noted by Whitt & Thomas (2013), for
any given medium with parameters N, f and S, horizontal characteristics (αf = 0)
are always a solution, like in the classical case. However, in the S = 0 case, the
αf = 0 solution is degenerate, i.e. the two characteristics collapse onto the horizontal.
Here, αf = 0 only corresponds to the shallow characteristic of slope α−f , while the
steep characteristic has a slope α+f = −2S2/N2. Because energy propagates along
characteristics, waves of frequency f can have a finite vertical group velocity along
the steep characteristic, or can have no vertical group velocity at all (along the
shallow characteristic). While the latter is also the case in the classical, S = 0 case,
the former is unique to the frontal case. This has important implications for the
reflection of NIWs in a front off the ocean surface.

2.3. Near-inertial wave reflection from the ocean surface
Indeed, imagine that waves oscillating at the frequency f happen to propagate
upwards, along steep characteristics. These waves will eventually encounter the ocean
surface, which is horizontal and therefore aligns with the shallow characteristic.
Their energy will accumulate under the surface in the same manner that energy can
accumulate along sloping boundaries in classical critical reflection (Phillips 1966), or
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Ocean surface
(a) (b) (c)

Ocean surface Ocean surface

FIGURE 3. Schematic of forward (a), critical (b) and backward (c) focusing reflections
at an ocean front. Grey lines are undisturbed isopycnals, dashed lines are characteristics
along with their associated direction of propagation. (a) ω> f ; (b) ω= f ; (c) ω< f .

along flat surfaces in non-traditional cases (Gerkema & Shrira 2005). By analogy,
we will qualify the present reflection as ‘critical’. The critical reflection separates
the frequency space into two regions, those of ‘forward’ (ω > f ) and of ‘backward’
(ω < f ) reflections, as illustrated in figure 3. In both cases, when incident waves
propagate along steep (shallow) characteristics, the reflection is (de-)focusing, i.e.
ray tubes compress (expand). In the present work, we will only consider focusing
reflections.

Similar to the classical case, described by e.g. Phillips (1966) or Thorpe & Haines
(1987), incident and reflected waves are bound by two constraints, namely that their
frequency and along-boundary wavenumber are the same. Translated to the frontal
case, the equivalent constraints are that incident and reflected waves share the same
horizontal wavenumber k, and that their slopes are symmetric around the isopycnal
slope (cf. (2.8)). This implies that the magnitude of the group velocity:

∣∣cg

∣∣≈ |cx
g| =

N
|k| |α|

√
1− ω

2
m

ω2
, (2.12)

decreases upon focusing reflection since |α−| < |α+|, which would reinforce the
amplification of wave energy by the compression of ray tubes.

3. Set-up
3.1. Domain

We numerically simulate cases of critical, forward and backward reflections. As in
the previous section, we assume a two-dimensional flow with no variations in the y
direction (∂y ≡ 0). The domain has length L = 400 m and depth H = 50 m or H =
100 m, depending on the numerical simulation. We use a Coriolis parameter of f =
10−4 s−1, typical of mid-latitudes. The buoyancy gradient of the background flow is
spatially uniform. The vertical gradient is the same for all simulations and equal to
N2 = 10−4 s−2. For most of the experiments, a background lateral gradient of S2 ≈
9.8×10−7 s−2 (corresponding to Ri=1.05 or S2/N2≈1 %) is used. However, a couple
of experiments with weaker lateral buoyancy gradients, i.e. S2 ≈ 7.1× 10−7 and 5×
10−7 s−2 (Ri= 2 and 4, respectively) were performed and are described in § 4.1.

The domain is periodic in the x direction. The surface of the ocean, located at z= 0,
is modelled as a free-slip, rigid lid:

w|z=0 ≡ 0, (3.1a)
(uz, vz + vz)|z=0 ≡ (0, 0) ⇒ vz|z=0 ≡−S2/f . (3.1b)
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The condition for v requires a surface stress for the perturbation velocity v in order
to compensate for what Thomas & Rhines (2002) call the ‘geostrophic stress’, namely
the stress induced by the thermal wind shear. We also set the buoyancy fluctuations
to zero at the top of the domain, which amounts to setting the buoyancy at z = 0
to a value, constant in time (but increasing with x as S2x), which for the buoyancy
perturbations, amounts to setting

b|z=0 ≡ 0. (3.2)

We want to draw attention to the fact that this boundary condition is imposed by
the numerical code, but is somewhat unphysical. Indeed, the condition ‘attaches’
isopycnals to given locations along the boundary. In the ocean, one would expect
density perturbations to be advected along the boundary, which cannot happen here.
In a companion article (N. Grisouard & L. N. Thomas, personal communication), we
are able to analytically test the sensitivity of the flow to a no-flux boundary condition
(bz|z=0≡ 0), and the results suggest that the conclusions of the present article will not
be affected by the form of the boundary condition. Having said this, implementing a
no-flux boundary condition is not necessarily realistic either, since the ocean surface
is host to intense air–sea buoyancy fluxes.

We use the same boundary conditions for the bottom of the domain (z = −H),
although this boundary will play a limited role in the present study.

3.2. Equations solved
We use a modified version of the pseudo-spectral model of Winters, MacKinnon &
Mills (2004), which solves

ut + (u · ∇)u+ f ẑ× u+ (S2/f )wŷ+∇p− bẑ=Du+F+Gŷ, (3.3a)
bt + (u · ∇)b+ S2u+N2w=Db+ F4, (3.3b)

∇ · u= 0. (3.3c)

The above set of equations differs from (2.4) in that they are non-hydrostatic as
well as fully nonlinear. As a consequence, the hydrostatic quantities discussed in
the previous section are slightly different from the ones actually used in the code,
which are derived in appendix A. In the parameter regime relevant for this article,
the numerical differences between the hydrostatic quantities and their non-hydrostatic
counterparts are extremely small. Therefore, we use hydrostatic quantities whenever
we perform an analytical calculation or process data, while using non-hydrostatic
quantities in the numerical code for consistency. We have the possibility to turn off
the nonlinear terms, which we will use in § 4.

The dissipation operator is D = νz∂2
z − νh

4∂
4
x , with νz the vertical viscosity and νh

4
the horizontal biharmonic hyperviscosity. Here, νz and νh

4 are the same for both the
momentum and buoyancy equations.
(F, F4) = (F1, F2, F3, F4), hereafter referred to as ‘the wave maker’, are forcing

terms, that set the fluid in motion:

F1(x, z, t) = Φ(z, t) cos(k1x+m1z−ω1t), (3.4a)

F2(x, z, t) = Φ(z, t) sin(k1x+m1z−ω1t)
f
ω1

(
1− k1

m1

S2

f 2

)
, (3.4b)
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Ocean surface

Frontal isopycnals

FIGURE 4. (Colour online) Main features of our numerical set-up: frontal isopycnals
(grey) and thermal wind v (left column), domain boundaries and wave maker. The wave
maker is centred around z0 and extends over a distance h0 around it (dotted horizontal
lines). It oscillates in time and space with an intensity proportional to a windowed
internal wavefield represented by coloured shades (field and colour axis range arbitrary)
of frequency ω1, wavevector k1, group velocity cg1, directed along the steep characteristic
α+ω1

(dashed line).

F3(x, z, t) = Φ(z, t) cos(k1x+m1z−ω1t)
(
− k1

m1

)
, (3.4c)

F4(x, z, t) = Φ(z, t) sin(k1x+m1z−ω1t)
m1S2 − k1N2

m1ω1
. (3.4d)

The forcing is designed to generate a plane wave that propagates upwards on the
steep characteristic, i.e. −k1/m1 = α+ω1

, with relative amplitudes and phases for each
component that satisfy the polarization relations of inertia–gravity waves. The forcing
is modulated in time and in the vertical by the function Φ(z, t)= A(1− e−ft)Φ0(z) in
order to (i) minimize the generation of frequencies, other than ω1, during the initial
spin-up and (ii) isolate the wave maker from the boundaries. Here, A is adjusted for
each experiment so as to ensure that the incident wave has a given amplitude when
reaching the surface. We also have k1 = −2π/L, ω1 is the forcing frequency and
Φ0(z) = exp −((z − z0)/h0)

2, where z0 = −25 m, and h0 = 6 m. The forcing is also
designed to minimize the generation of potential vorticity, which would modify the
mean flow and/or lead to flow instabilities. We systematically check that no negative
potential vorticity is generated within the wave maker. The elements of our numerical
simulations discussed so far are summarized in figure 4.

Finally, G(z)ŷ is a term implemented in order for the upper boundary condition
(3.1b) to be approximately satisfied. Indeed, as explained in Winters et al. (2004),
our numerical code projects the horizontal momentum equation onto a set of cosine
functions, whose vertical derivatives vanish at z= 0 and z=−H. In order to satisfy
(3.1b), we follow a procedure inspired by Winters & de la Fuente (2012), namely to
exchange the boundary stress for an interior stress generated by imposing a forcing
term in the interior of the fluid that is confined to the vicinity of the boundary over
a distance δ. For the upper boundary, we choose

G(z)=G0 exp(−(z/δ)2), (3.5)
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with δ= 31z/4. G0 is determined by constraining
∫

Gdz to match νzvz|z=0, the desired
momentum flux through the upper boundary of the domain:∫ 0

−∞
G(z′)dz′ = νz∂zv|z=0 = νzS2/f , (3.6)

where −∞ has been substituted for −H, which captures this integral well because
H� δ. This yields G0=−2νzS2/(

√
πf δ). A similar boundary condition is implemented

at the bottom of the domain.
We use a two-dimensional grid, with nx = 256 points in the horizontal direction,

corresponding to a horizontal resolution of 1x≈ 1.6 m. Unless otherwise stated, we
use a vertical resolution 1z ≈ 9.8 × 10−2 m, corresponding to nz = 513 points for
H= 50 m and nz= 1025 points when H= 100 m. The code uses a third-order Adams–
Bashforth time-stepping scheme with a time step of 1t = 5 s. All simulations are
integrated for 20 forcing periods.

As explained in Winters et al. (2004), the code projects all fields onto a discrete
set of complex exponentials in the horizontal direction. In the vertical direction,
while u and v are projected onto a set of cosine functions whose vertical derivatives
vanish at the top and bottom of the domain, w and b are projected onto a set of sine
functions, which vanish at the top and bottom of the domain. The dynamic pressure
p + E, where E = |u|2/2 is the kinetic energy of the perturbations, is computed by
taking the divergence of (3.3a) and inverting the resulting Poisson equation. Since
this inversion is straightforward in spectral space, the dynamic pressure is solved
algebraically and substituted into the right-hand-side forcing terms of the momentum
equations, as explained by Winters et al. (2004).

Finally, we neglect the modification of the wave physics by the horizontal
component of the Earth’s rotation vector, which we justify in appendix B. By doing
so, and like Whitt & Thomas (2013), we follow the recommendations of Colin de
Verdière (2012), who determined that in a typical oceanic front, effects associated
with the thermal wind shear and vertical stratification overwhelm non-traditional
effects.

4. Linear numerical simulations

In order to illustrate the basic concepts of critical and near-critical reflections in the
context of oceanic fronts, we set all explicit advection operators to zero (u · ∇≡ 0),
preventing all nonlinear interactions between perturbation modes but retaining their
interactions with the stratification and the thermal wind.

4.1. Critical reflection (ω= f )
We define a non-dimensional measure of the frequency, γ , such that

ω1 =ωm + ( f −ωm)γ , (4.1)

where ω1=ωm when γ = 0 and ω= f when γ = 1. We also set νz= 2× 10−6 m2 s−1,
νh

4 = 0.5 m4 s−1 and H = 50 m. The amplitude of the forcing, A (cf. (3.4) and the
definition of Φ), is set to 3.2×10−8 m s−2, which yields a wave velocity of amplitude
U1≈ 1 mm s−1, that corresponds to an ‘along-x Richardson number’ Ri1= (N/mU1)

2

of approximately 10.
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FIGURE 5. (Colour online) The velocity in the x direction, u, in mm s−1, CD-filtered
to isolate the signal at ω = f , for a linear simulation and critical reflection (γ = 1).
The full signal at ω = f , Re[Uf ] (a), and its upward, Re[Uu

f ] (b) and downward Re[Ud
f ]

(c) propagating components. Solid lines indicate the steep characteristic slope, dash-dotted
lines the shallow one.

Throughout the rest of the article, we use complex demodulation (CD) filtering
to study the spatial structure of the spectral content at a given frequency of the
solution and its decomposition into upward- and downward-propagating signals. The
CD filtering is accomplished using the method of Mercier, Garnier & Dauxois (2008)
adapted for our application (see appendix C for details). We denote the spectral
content of, say, u at frequency ω as Uω, and its upward- and downward-propagating
signals as Uu

ω and Ud
ω, respectively. Here and throughout the rest of the article, we

filter our fields over the last ten forcing periods of the simulations, during which
the flow is in a state of forced–dissipative balance and oscillations are steady in
amplitude. Note that these CD-filtered fields are complex: for example, Re[Uω],
where Re denotes the real part, is the reconstruction of the ω-oscillating signal at a
given phase and its modulus |Uω| is its amplitude.

These quantities are shown in figure 5 for the case of critical reflection (γ = 1,
ω = f ). As expected, no wave propagates back downwards after reflection from the
ocean surface, except for a signal in the top 1 to 2 m of the domain and whose scale
is set by viscous effects (Grisouard & Thomas, in preparation). Upon reflection, the
amplitude of the wave is intensified in a boundary layer near the surface. The strength
of this intensification depends on the slope of the isopycnals of the background
flow since this slope sets the angle of the steep characteristics of inertial waves
(figure 6). Consequently, the stronger the front (as measured by the isopycnal slope
and Richardson number of the background flow), the greater the compression of ray
tubes during critical reflection, and thus the greater the amplification of the waves.

4.2. Forward reflection (ω> f )
We now turn to the forward reflection case, and run a simulation, identical to the one
described in § 4.1, except γ = 2 (ω1 ≈ 1.8× f ) and A= 6.9× 10−8 m s−2 (Ri1 ≈ 10).
We present the CD-filtered fields for u in figure 7.

The full filtered signal at ω = ω1 displayed in figure 7(a) shows an interference
pattern, corresponding to a superposition of an upward-propagating wave (figure 7b),
which is radiated from the wave maker, and a downward-propagating wave (figure 7c),
reflected from the surface and with phase lines that align with the predicted angle of
the shallow characteristic.
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FIGURE 6. (Colour online) Snapshots of the along-x velocity u, each normalized by its
peak value at z = −2 m for three linear simulations with γ = 1 (critical reflection) and
νz= 2× 10−6 m2 s−1, for different values of Ri: 1.05 (a), 2 (b) and 4 (c). The grey lines
mark the inclination of undisturbed isopycnals and the dashed lines the inclination of the
steep characteristic. The colour scale is the same throughout the panels.
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FIGURE 7. (Colour online) Same as figure 5, but for γ = 2 (forward reflection), CD-
filtered at the forcing frequency. Note that the vertical axis range is different, and that a
dashed line in (b) indicates Φ0, the position and relative amplitude of the wave maker.

The reflected component decays with depth. This can be understood in terms of
viscous damping. Indeed, consider a wavepacket of vertical wavevector m whose
energy propagates in the direction of its group velocity cg. Neglecting horizontal
dissipative processes, the amplitude of the wavepacket decays with an e-folding time
scale of (νzm2)−1, or with an e-folding vertical length scale of |cz

g|(νzm2)−1. In our
case, wavepackets originate from the reflection of the incident wave from the surface.
Their wavenumber is mr =−k1/α

−
ω1

, and |cz
g|(νzm2

r )
−1 ≈ 5.0 m. A linear regression of

ln〈|Ud
ω1
|〉 over the top 20 m of the domain, where 〈·〉 denotes the horizontal, along-x

average, yields the vertical decay length scale of the reflected wave, namely 5.5 m,
in good agreement with the predicted value.

4.3. Backward reflection (ω< f )
We now run a simulation, similar to the ones described in §§ 4.1 and 4.2, except for
γ = 0.3 (ω1 ≈ 0.45× f ), A= 2.4× 10−8 m s−2 (Ri1 ≈ 10), nz = 1025 (1z≈ 4.88 cm)
and νz = 5 × 10−7 m2 s−1. The increased vertical resolution and decreased vertical
viscosity serve two purposes. First, they allow the reflected wave to propagate over
a few vertical wavelengths before being completely dissipated. Second, strong viscous
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FIGURE 8. (Colour online) Same as figure 7 but for γ = 0.3 (backward reflection) and
νz = 5× 10−7 m2 s−1.

effects induce strong distortions in the propagation properties of NIWs, especially
for backward-reflected waves. Addressing these distortions is outside the scope of
the present article, and is discussed in a companion article (Grisouard & Thomas, in
preparation). We present CD-filtered fields for u in figure 8.

Similarly to the forward-reflection case, incident and reflected waves propagate
along the steep and shallow characteristics, except that now the shallow characteristic
corresponds to backward-propagating waves (cf. figure 8). We have |cz

g|(νzm2
r )
−1 ≈

5.1 m for the linearly predicted decay scale, which compares well with our numerical
simulation, where we estimate an e-folding decay scale of 5.3 m.

Note that if the viscosity had been kept at the initial value, namely νz =
2× 10−6 m2 s−1, backward-reflected waves would have propagated less far vertically
than their forward-reflected counterparts. As will be described in the next section,
nonlinear effects reinforce this tendency of forward reflections to be associated with
stronger downward energy propagation.

5. Nonlinear numerical simulations of near-critical reflections
5.1. On the asymmetry between forward and backward nonlinear reflections

In the classical case of waves reflecting off slopes, other authors (Peacock &
Tabaei 2005; Tabaei, Akylas & Lamb 2005) have observed that the generation
of super-harmonics, namely waves of frequencies that are multiples of the forcing
frequency, is often observed during forward reflections, but is hardly detectable in
the case of backward reflections.

In forward reflections, how the group speeds of these nonlinearly generated higher-
frequency waves compare with that of the linearly reflected wave is the result of a
competition between (i) their higher wavenumbers (Thorpe & Haines 1987; Gostiaux
et al. 2006), which slows them down (cf. (2.12)), and (ii) their propagation along
steeper characteristics, which increases their vertical group velocity. In our parameter
regime, the result of this competition is that higher-frequency energy propagation is
vertically faster and further reaching than for the linearly reflected waves.

On the other hand, backward reflections tend to be associated with much weaker
super-harmonic generation. Jiang & Marcus (2009) have provided theoretical
arguments to explain this asymmetry between backward and forward reflections,
which we summarize here. The nonlinear interaction of two plane internal waves
characterized by frequencies and wavevectors (ω′, k′) and (ω′′, k′′) generates a third
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FIGURE 9. (Colour online) Typical wavevector configurations for forward (a) and
backward (b) reflections under the hydrostatic approximation. The main features of linear
reflections are highlighted. Firstly, the incident and reflected characteristics (not displayed)
have slopes symmetric with respect to the isopycnal slope. The wavevectors of the incident
and reflected waves, k1 and kr, respectively, are perpendicular to their characteristics.
Secondly, the horizontal components of k1 and kr are equal. In the forward reflection
case (a), the forced wavevector k1 + kr runs more parallel to isopycnals compared to k1
or kr, similar to freely propagating waves of higher frequency. In backward reflections
(b), k1 + kr runs more perpendicular to isopycnals than either k1 or kr, which for a
higher-frequency oscillation is not consistent with the dispersion relation.

oscillation characterized by (ω′ + ω′′, k′ + k′′). When ω′ + ω′′ and k′ + k′′ satisfy
the dispersion relation, the triad is resonant and the energy transfer towards the
(ω′ +ω′′)-frequency wave is efficient. In general, the closer the third oscillation is to
a resonant configuration, the stronger the generation of the super-harmonic wave. In
the case of wave reflection on a slope, the two interacting waves are the incident and
the reflected waves and ω′ and ω′′ are identical. For a given slope angle, and provided
that this slope does not exceed a certain value, two incident wave frequencies satisfy
this resonance condition (Thorpe & Haines 1987), both of which corresponding to
forward reflections. (Note that if instead of a plane wave, the incident wave is in
the form of a beam, these considerations about resonance probably do not apply
(Tabaei et al. 2005; Rodenborn et al. 2011).) On the other hand, as shown by Jiang
& Marcus (2009), resonance cannot occur in the backward-reflecting range.

The same reasoning can easily be applied to our frontal case and is sketched in
figure 9. We recall from § 2.3 that the linear reflection of plane internal waves from a
horizontal boundary is constrained by the conservation of the horizontal wavenumber
k1 as well as the dispersion relation of internal waves (2.6). Let us then consider
an incident wave propagating along the steep characteristic, and a reflected wave
propagating along the shallow characteristic. Their nonlinear interaction will force
a third wave whose wavevector is the sum of those of the interacting waves. As
illustrated in figure 9, the wavevector of the forced wave in backward reflection
runs more perpendicular to isopycnals, which if resonant, would be associated with
a wave frequency closer to the minimum frequency (cf. (2.7)) than the frequency
of the incident and reflected waves. Hence backward reflections cannot generate
freely propagating super-harmonics through triad resonant interactions. For forward
reflections, in contrast, the forced wavevector can run more parallel to isopycnals,
consistent with a wave of higher frequency, thus making it possible for the creation
of super-harmonics through triad resonant interactions.
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FIGURE 10. (Colour online) Snapshot of w (mm s−1) in a fully nonlinear simulation for
γ = 2 (forward reflection), νz= 2× 10−6 m2 s−1 and Ri1≈ 10. Isopycnals of the full flow
are contoured in black and the dashed line identifies Φ0.
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FIGURE 11. Frequency spectra of w for a nonlinear simulation with γ = 2 (forward
reflection), νz = 2 × 10−6 m2 s−1 and Ri1 ≈ 10. The spectra are evaluated at depths z =
−10 m (grey) and z=−50 m (black), averaged along x and normalized by the maximum
value at z=−10 m. The dashed vertical line marks ω=ω1.

5.2. Forward reflection (ω1 > f )
We now run a simulation, similar to the one described in § 4.2, except that it is
now fully nonlinear. As before, γ = 2 (ω1 ≈ 1.8 × f ), νz = 2 × 10−6 m2 s−1 and
Ri1 ≈ 10. As expected from the arguments described in § 5.1, a snapshot of the
vertical velocity (figure 10) reveals that energy is able to propagate downwards over
the whole water column. Moreover, figure 11 shows that while the frequency spectrum
above the forcing region exhibits the forcing frequency as the dominant frequency,
only higher harmonics are visible below the forcing region. Indeed, once a strong
2ω1-frequency wave is generated, the number of possible interactions grows, i.e. ω1
and 2ω1 oscillations can interact to form 3ω1-frequency waves, etc., in a process akin
to wave turbulence.

We use CD filtering to isolate the spatial structure of oscillations at the forcing
frequency and its harmonics (figure 12). For the former, phase lines and the theoretical
predictions for the characteristics align well (cf. figure 12c,e), similar to the linear
simulations. For the signal at 2ω1 however, we find a misalignment between phase
lines and characteristics in the top 30 m of the domain (cf. figure 12f ). This was
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FIGURE 12. (Colour online) CD-filtered vertical velocity in a fully nonlinear simulation
with γ = 2 (forward reflection), Ri1 ≈ 10 and νz = 2 × 10−6 m2 s−1. Panels (a,c,e) and
(b,d,f ) correspond to Wω1 and W2ω1 , respectively; (a,b) contain both upward and downward
components, while (c,d) and (e,f ) are the upward and downward components, respectively:
(a) Re[Wω1]; (b) Re[W2ω1]; (c) Re[Wu

ω1]; (d) Re[Wu
2ω1]; (e) Re[Wd

ω1]; ( f ) Re[Wd
2ω1]. The

colour scale is in mm s−1 and applies to all panels. Solid lines indicates the steep
characteristic slope, dash-dotted lines the shallow one.

to be expected, based on the arguments described in § 5.1, since we have not tuned
ω1 to excite a resonance. We can evaluate the degree of resonance by calculating
the quantity (m1 + mr)/m2, where m1 and mr are the vertical wavenumbers of the
incident and reflected waves and m2 is the vertical wavenumber of the second
harmonic calculated using the dispersion relation (2.6) and assuming k = 2k1. This
parameter is equal to unity at resonance; however for this simulation it is close to
0.5, indicating that the flow is only near resonance. Therefore, the phase lines of the
forced waves are not expected to align with the characteristics of freely propagating
waves. Below a certain depth however, free downward-propagating harmonics are
observed. For example, below z=−30 m in figure 12(f ), we can observe a field of
2ω1-frequency waves ‘escaping’ the region where waves are generated.

5.3. Backward reflection (ω1 < f )
We now run a simulation, similar to the one described in § 4.3, although fully
nonlinear. As before, γ = 0.3 (ω1 ≈ 0.45× f ), νz = 5× 10−7 m2 s−1 and Ri1 ≈ 10.

As expected from our conclusions in § 5.1, the reflection does not induce freely
propagating higher harmonics, as a revealed by a snapshot of u (figure 13a), as well
as frequency spectra above and below the forcing region (figure 14). In the latter
figure, the dominant peaks are the forcing frequency, and the higher harmonics visible
on figure 11 have virtually disappeared. Note that the peak at the forcing frequency
is visible below the forcing region, contrary to the forward reflection shown in
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FIGURE 13. (Colour online) Snapshots of (a) u (mm s−1) and (b) its lateral average,
〈u〉 (mm s−1), in a fully nonlinear simulation for γ = 0.3 (backward reflection), Ri1 ≈ 10
and νz = 5× 10−7 m2 s−1. Isopycnals are contoured in black in (a), and the dashed line
shows the location of the forcing envelope Φ0.
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FIGURE 14. Same as figure 11 but for γ = 0.3 (backward reflection), and where the black
line is now the spectrum evaluated at z=−45 m.

figure 11. A careful comparison reveals that the relative amplitude of this peak is
actually smaller for the backward reflection (figure 14) than for the forward reflection
(figure 11), which is indicative of a nearly complete absence of higher harmonics in
the backward reflection rather than a stronger linear reflection.

Nonlinear effects are present however, as revealed by the presence of a non-zero
laterally mean flow 〈u〉 (cf. figure 13b). The horizontal mean flow exhibits a vertical
wavelength of 4.2 m, estimated from the average peak-to-peak distance. This flow is
approximately stationary in time and, indeed, its vertical wavelength is comparable
to the vertical wavelength of a zero-frequency wave generated by a nonlinear
interaction of incident and reflected waves in which frequencies are subtracted,
i.e. `= 2π/|m1−mr|= 4.0 m, where m1=−k1/α

+
ω1

and mr=−k1/α
−
ω1

. This interaction
is non-resonant, as are the interactions potentially generating super-harmonics and
therefore no propagating wave of higher frequency is generated, and all motion is
confined to regions where incident and reflected waves overlap. Note that this mean
flow is purely horizontal, and therefore does not appear in the spectra of w shown in
figure 14.
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FIGURE 15. (Colour online) Snapshots of the fully nonlinear velocity fields for γ = 1
(critical reflection), νz=2×10−6 m2 s−1 and Ri1≈10. (a) Colour: u (mm s−1); solid lines:
isopycnals; dashed line: Φ0. (b) Snapshot of 〈u〉 (mm s−1). (c) Colour: w (mm s−1); solid
lines: same as for (a). (d) u|z=0 (mm s−1).

6. Nonlinear numerical simulation of a critical reflection (ω1 = f )

As we saw in the previous section, forward reflections of super-inertial waves induce
deep energy propagation, while backward reflections of sub-inertial waves do not. We
now focus on the intermediate case, namely the critical reflection of inertial waves.

6.1. Overall behaviour
To begin with, we run the fully nonlinear version of the linear experiment described
in § 4.1. Snapshots of the velocity field are shown in figure 15. Strikingly, the effect
of the reflection is felt over a larger depth than in the linear case presented in § 4.1.
Indeed, the incoming wave is perturbed over a depth of around 10 m (to be compared
with e.g. the viscous oscillating boundary layer thickness

√
νz/f ≈ 14 cm, or the

metre-thick boundary layer observed in the linear case, § 4.1). This simulation also
has a horizontally averaged flow 〈u〉 that oscillates in the vertical with a wavelength of
approximately 2 m and decays with depth in a quasi-exponential manner (figure 15b).
Similar to the nonlinear simulation of backward reflection presented in § 5.3, this
laterally averaged flow is also approximately stationary in time, suggesting that this
flow is the result of non-resonant, nonlinear interactions. We will elaborate on this
point in the rest of this section.

Note that in the classical case, Thorpe & Haines (1987) predict the existence of a
time-mean flow, flowing parallel to the boundary when waves reflect off it (cf. also
Grisouard et al. 2013; Zhou & Diamessis 2013). However, this flow appears only in
off-critical reflection cases.

Another feature of nonlinear, critical reflections are bores. For example, in the
snapshots of w and u|z=0, shown in figures 15(c) and 15(d), respectively, a bore is
located around x = 110 m that induces sharp lateral variations in u, and extends
downwards in the form of alternating vertical velocity perturbations that decay
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FIGURE 16. (Colour online) CD-filtered u, in mm s−1, for a fully nonlinear simulation,
for γ = 1 (critical reflection), νz = 2 × 10−6 m2 s−1 and Ri1 ≈ 10, highlighting the
downward-propagating signals at f (a, Re[Ud

f ]) and 2f (b, Re[Ud
2f ]). In both cases, a

downward-propagating wave at the filtering frequency would propagate along the shallow
characteristics (dash-dotted lines) if it were freely propagating.

with depth. The bore is approximately 20 m wide, a width that does not seem to
depend on the horizontal biharmonic dissipation, as a simulation with νh

4 = 10 m4 s−1

(a twenty-fold increase of νh
4 , not shown) suggests. Bores have been observed in

classical critical reflections from an inclined slope by Cacchione & Wunsch (1974)
and are predicted by theory to be ubiquitous (Dauxois & Young 1999; Thorpe 1992,
1999). To our knowledge, they have never been reported in numerical experiments
on critical reflections. Our simulation highlights the peculiar vertical structure of the
bore, namely the alternating vertical velocity perturbation, which to our knowledge
has not been observed nor predicted in the context of classical reflections.

6.2. Harmonics
Critical reflection induces a flow response that extends deep into the water column,
although this flow response is very different from that in forward reflection, because
no freely propagating higher-frequency wave is generated, as described below. In this
sense, critical reflection is closer to backward reflection.

Frequency spectra calculated anywhere in the top 10 m of the domain consist of
a series of well-isolated peaks at frequencies that are multiples of ω1 = f . Figure 16
shows the downward-propagating components of the dominant harmonics, at f and
2f . If these harmonics were freely propagating, their phase lines would align with
the shallow characteristics, but that is not the case. The characteristics shown in
figure 16 were calculated using the properties of the mean flow at t = 0. Although
these properties change with time, the effect on the slope of characteristics is minimal
and cannot explain this misalignment with phase lines. Therefore, we can conclude
that these motions are forced locally through nonlinear interactions.

Perhaps more surprising is that in principle, and unlike in the forward reflection
presented in § 5.2, there could be 2f -frequency waves, which could freely propagate
down along inclined characteristics, say below the region where nonlinear interactions
act to force a 2f -frequency oscillation. This has been observed in the classical case,
for example by Gostiaux et al. (2006) or Gayen & Sarkar (2010). In our case however,
no such radiation of higher harmonics is observed. This is perhaps due to the presence
of turbulence in the aforementioned references, while our simulations are only weakly
nonlinear.

Each harmonic’s existence is intricately tied to the existence of the others, as a
refined analysis of their dynamics show. As we mentioned earlier, the whole flow can
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be approximated as a sum of harmonics, which are well isolated in frequency. For
example,

u(x, z, t)≈
∞∑

n=−∞
Unf (x, z) exp(in f t), (6.1)

where the condition that u is real imposes that the complex conjugate of Unf be equal
to U−nf . One can then replace u by the above expression in equation [(3.3a) · x̂] and
project on the relevant complex exponential (cf. (C 1)) so as to isolate the nth complex
Fourier coefficient. The nonlinear terms, which force the nth harmonic, are then

1
T

∫ t0+T

t0

(uux +wuz) exp(−in f t)dt=
∞∑

j=−∞
Ujf ∂xU(n−j)f +Wjf ∂zU(n−j)f . (6.2)

For our calculations, t0= T = 20π/f . The equation above highlights the fact that for a
given frequency n f , the nonlinearly forced motion is the result of an infinite number
of triadic interactions between waves whose frequencies add up to n f . Because all
our fields are real, we can re-write (6.2) as

Λnf =
∞∑

j=0

Λ
( j)
nf , where Λnf = 1

T

∫ t0+T

t0

(uux +wuz) exp(−in f t)dt (6.3)

and
Λ
( j)
nf = 2

[
UIf ∂xUJf +WIf ∂zUJf + (1− δIJ)(UJf ∂xUIf +WJf ∂zUIf )

]
, (6.4)

where

I = bn/2c − j and J = dn/2e + j (note that I + J = n), (6.5a,b)

in which b·c and d·e are the floor and ceiling operators, respectively, and where the
Kronecker delta δIJ avoids double counts (note that the sum in (6.2) starts at −∞,
while the one in (6.3) starts at 0). The interpretation of (6.3) is that Λnf is the sum
of all terms that force an oscillation in real space at a frequency n f . As for each
individual Λ( j)

nf , it collects all terms corresponding to the interaction between waves
of frequencies |If | and |Jf |.

For low values of n, only a few Λ
( j)
nf are significant. For example, the nonlinear

forcing of the f -frequency motion (n= 1), shown in figure 17(a), is well captured by
simply adding Λ(0)

1f and Λ(1)
1f . That is, the forced motion shown in figure 16(a) is the

result of non-resonant triadic interactions between both zero- and f -frequency motions
(Λ(0)

1f , I = 0, J = 1, cf. figure 17b) and f - and 2f -frequency oscillations (Λ(1)
1f , I =−1,

J = 2, cf. figure 17c).
The zero- and 2f -frequency oscillations, which can force oscillations at f , are

themselves the result of non-resonant, triadic interactions. This is illustrated in
figure 18, which shows the vertical structure of the lateral average of the magnitude
of a few nonlinear forcing terms, 〈|Λnf |〉, and of their constituents, 〈|Λ( j)

nf |〉. For
example, the mean flow is driven almost exclusively by Λ

(1)
0f (I = −1, J = 1), the

interaction between upward- and downward-propagating oscillations at frequency
f (see figure 18a). For the second harmonic, figure 18(c) shows that once again,
interactions between f -frequency oscillations capture the main forcing pattern, since
Λ
(0)
2f (I = J = 1) is the dominant term. In contrast, the nonlinear driving term for
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FIGURE 17. (Colour online) (a) Λ1f , (b) Λ(0)
1f and (c) Λ(1)

1f for a fully nonlinear simulation,
with γ = 1 (critical reflection), Ri1 ≈ 10 and νz = 2× 10−6 m2 s−1; see (6.3) for notation.
Units for all panels are 10−7 m s−2.
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FIGURE 18. Laterally averaged nonlinear forcing terms 〈|Λ( j)
nf |〉 for the mean flow (n= 0)

〈|Λ( j)
0f |〉 (a), inertial motions (n= 1) 〈|Λ( j)

1f |〉 (b) and the second harmonic (n= 2) 〈|Λ( j)
2f |〉

(c). ‘Total’ refers to 〈|Λnf |〉.

inertial motions, Λ1f , involves interactions between the first harmonic and both the
mean flow and second harmonic via Λ(0)

1f and Λ(1)
1f (figure 18b).

Figure 18 highlights how the vertical extent of oscillating motion of critical
reflection in this system is the result of the mutual interaction of non-resonantly
forced harmonics. In this way, energy can penetrate well into the interior. That is not
to say that dissipation is unimportant in this system. Indeed, we will see next that
viscosity is the main agent of the decay of the nonlinear flow with depth.

6.3. Horizontally averaged flow
We now use the horizontally averaged flow as a proxy to retrieve more information
about the harmonics. Indeed, as we just saw, the harmonics form a network of
interacting triads, and are all closely tied to each other. Therefore, studying one
harmonic in particular gives some information about the spatial structure of the rest.
We choose the zero-frequency component because it has the simplest spatial structure.
Indeed, the time-mean flow is mostly the result of interactions between two inertial
oscillations whose frequencies cancel, as for the backward reflection in § 5.3. This
also implies that the horizontal wavenumber of the former is the difference between
the horizontal wavenumbers of the latter, namely zero. Because the laterally averaged
flow is also stationary in time, as mentioned in § 6.1, we can conclude that the lateral
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FIGURE 19. Terms, constitutive of (6.6), the x-averaged, along-x momentum equation in
a fully nonlinear simulation, with γ = 1 (critical reflection), νz = 2 × 10−6 m2 s−1 and
Ri1 ≈ 10.

and time averages are virtually identical. We therefore study the x-averaged flow, and
in particular the x-momentum equation, taking into account the fact that ∂t〈u〉 ≈ 0:

〈uw〉z − f 〈v〉 − νz 〈u〉zz = 0. (6.6)

Figure 19 displays the three terms of (6.6) and shows that each of them plays
a non-negligible role in achieving the balance. In other words, the sub-surface
flow is achieved by a balance between vertical advection, friction and the Coriolis
acceleration.

As a consequence, the spatial structure of the zero-frequency harmonic is
dependent on νz and the forcing amplitude. We check this with additional numerical
simulations, with a new set of parameters including Ri1 ≈ 100 (up from 10) and
νz = 4 × 10−6 m2 s−1 (increased from 2 × 10−6 m2 s−1). For each numerical
experiment, the profile of 〈u〉 (such as the one presented in figure 15b) is averaged in
time over the last ten forcing periods of the simulations, which removes small residual
fluctuations in time. The depth and amplitude of each local peak of 〈〈u〉〉t, where 〈·〉t
is the time average operator, is then measured, from which we retrieve the envelope
of the vertical oscillations in 〈〈u〉〉t (see figure 20). A semi-logarithmic scale highlights
the spatial range(s) over which the envelope decays exponentially with depth. All
numerical experiments exhibit a sharp exponential decay of the envelope with depth
immediately under the surface, until approximately z = −2.5 m. The decay is more
pronounced for weaker amplitude, but does not seem to depend on the viscosity.
Below z=−2.5 m, the decay is more moderate, and the reverse happens: the decay
length scale depends on viscosity, but not on the forcing amplitude. Simulations
run with different biharmonic viscosities, νh

4 , exhibit essentially the same behaviour,
implying that horizontal dissipation plays a negligible role in the dynamics.

For most of the depth over which the harmonics exist, their decay strongly depends
on νz. This suggests that if the viscosity were reduced, harmonics could extend deeper
into the interior. This goes against the classical notion of critical reflection being
associated with the absorption of most of the energy in the immediate vicinity of
the boundary, as has been documented in the literature (e.g. Cacchione & Wunsch
1974; Ivey & Nokes 1989; Slinn & Riley 1996; Gostiaux et al. 2006; Gayen & Sarkar
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FIGURE 20. Amplitudes of the local maxima as a function of depth of 〈〈u〉〉t in m s−1 in a
fully nonlinear simulation with γ = 1 (critical reflection). Black symbols are for Ri1 ≈ 10
and grey symbols are for Ri1 ≈ 100; circles are for νz = 2 × 10−6 m2 s−1, crosses for
νz = 4× 10−6 m2 s−1.

2010). Note that some of these references describe the radiation of energy into the
interior of the fluid via freely propagating harmonics. These waves, generated in the
boundary layer and which then propagate freely into the fluid, are very different from
the oscillations found in our cluster of forced triads, which are generated throughout
the water column, and which cannot propagate freely.

7. Discussion and conclusions
At a front, inertial waves can travel on two distinct characteristics, one flat and

one tilted at twice the slope of isopycnals. When inertial waves propagating upward
on the steep characteristic collide with the sea surface, and reflect onto the flat
characteristic, they can experience amplification following a process akin to critical
reflection of classical internal waves from a sloping wall (Phillips 1966) or of
non-traditional NIWs from flat surfaces (Gerkema & Shrira 2005). Fully nonlinear
numerical simulations highlight the stark asymmetry between forward reflections
(ω> f ), for which incident and reflected waves can interact near-resonantly, trigger a
wave–turbulence cascade towards higher frequencies and redistribute energy vertically,
and backward reflections (ω< f ), for which nonlinear interactions are too off-resonant
to generate freely propagating high-frequency waves. In the case of frontal critical
reflection (ω = f ), we find that energy extends far below the surface. In contrast
to classical critical reflection (Gostiaux et al. 2006), this energy is not in a freely
propagating wave form, but rather exists as a cluster of non-resonant interacting
triads. Friction affects the dynamics of these forced oscillations and our numerical
simulations show that as viscosity is reduced they penetrate deeper into the ocean
interior.

For critical reflection at a front to occur, inertial waves must be generated on the
steep characteristic. In our numerical simulations this was accomplished by the wave
maker (3.4). One mechanism that could radiate inertial waves upward is the instability
of lee waves generated by geostrophic currents flowing over rough topography
(Nikurashin & Ferrari 2010a). Nikurashin & Ferrari (2010b) and Nikurashin, Vallis
& Adcroft (2012) notice in their numerical simulations of the Antarctic Circumpolar
Current that all such inertial waves are dissipated well below the surface. The
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observations of Waterman, Naveira Garabato & Polzin (2013) and Waterman et al.
(2014) contradict this result and show that a significant fraction of the wavefield is
able to propagate higher than predicted, although its fate is unclear. It is possible
to imagine that these waves could reach the front-rich surface of the Antarctic
Circumpolar Current, and experience critical reflection there.

In the ocean, inertial oscillations are most often set in motion by variable winds.
Winds primarily induce horizontal forces, which unlike our wave maker are not
optimal for accelerating the slantwise motions of the inertial waves on the steep
characteristic. This suggests that wind-driven inertial oscillations should not be
very effective at triggering critical reflections. However, there are other ways that
inertial motions can be generated at fronts that do not require external forcing, such
as geostrophic adjustment (Ou 1984; Blumen 2000; Plougonven & Zeitlin 2005)
or rapid frontogenesis (Shakespeare & Taylor 2013, 2014). These processes are
associated with slantwise ageostrophic near-inertial motions that could radiate waves
better suited for critical reflection. Having said this, at realistic ocean frontal flows
with vertical vorticity (in contrast to the idealized fronts studied here), the frequency
criteria for critical reflection is broader, suggesting that additional wave generation
mechanisms could come into play.

In a unidirectional frontal flow with vertical vorticity, ζ , the minimum frequency of
inertia–gravity waves (2.7) becomes ωm = f

√
1+ ζ/f − 1/Ri; however the expression

for the slope of characteristics (2.8) remains unchanged (Whitt & Thomas 2013).
Consequently, critical reflection off the sea surface occurs at the effective inertial
frequency feff = f

√
1+ ζ/f rather than f . In frequency space, the oceanic near-inertial

peak also tends to be spectrally broader than say the internal tide, and therefore spans
a somewhat wide range of frequencies around ω= f . But because fronts are associated
with a continuous range of vertical vorticity, which includes ζ = 0, a significant
portion of the near-inertial peak can potentially be absorbed by critical reflections
at fronts. Regions with cyclonic vorticity where feff > f tend to be correlated with
enhanced horizontal density gradients at fronts, a phenomenon that can be attributed
to strain-driven frontogenesis and conservation of potential vorticity (Thomas et al.
2008). These are regions where isopycnals are steepest and hence wave amplification
via critical reflection would be strongest. It follows that critical reflection should be
most pronounced for waves with frequencies ω = feff > f . Such super-inertial waves
are a common feature of the internal wave continuum in the ocean and thus are
likely to be readily available for critical reflection at fronts.

For example, one can think of the mechanism considered by Winters et al.
(2011), with the case of M2 (semi-diurnal) internal tides propagating poleward on a
non-traditional β-plane towards the latitude 74.5 (North or South). At these ‘inertial’
latitudes, the M2 tidal frequency matches | f | and due to prominent non-traditional
effects in the weakly stratified abyss, the internal tide experiences a critical reflection
from the flat bottom. The inertial latitude is different for each tidal frequency, and it
is easy to imagine a similar process occurring at fronts located in their vicinity, where
internal tides, which also happen to be near-inertial, can propagate upward on the
steep characteristic and critically reflect against the ocean surface. This phenomenon,
combined with the broadening of the critical frequency criterion when ζ 6= 0, could
mean that internal tides could critically reflect against the ocean surface at fronts
located in a broad latitudinal range around their inertial latitude.

Unlike classical or non-traditional critical reflection, frontal critical reflection
requires a background flow. In this unique setting, wave–mean flow interactions are
possible. Indeed, related studies have shown that NIWs in fronts can be effective
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at exchanging kinetic energy with mean flows and could play an important role in
the energy balance of the ocean circulation (Thomas 2012; Thomas & Taylor 2014).
These studies highlight the importance of ageostrophic secondary circulations in the
combined dynamics of the front and the waves, which could in turn significantly
modify the critical reflection phenomenon described here. Moreover, these studies did
not explore the influence of horizontal boundaries in the energetics of the interactions.
In a follow up article, we will investigate how the reflection of NIWs off the sea
surface at fronts affects the transfer of energy between the waves and the frontal flow
and trace the energy pathway to dissipation.
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Appendix A. Non-hydrostatic expressions for wave propagation

If uh is replaced by u in (2.4), one retrieves the non-hydrostatic Eliassen–Sawyer
equation: (

f 2 + ∂tt
)
ψzz − 2S2ψxz + (N2 + ∂tt)ψxx = 0, (A 1)

from which we deduce, following the steps that lead to (2.6),

ω2(α)= f 2 + α2N2 + 2αS2

1+ α2
. (A 2)

For a given medium ( f ,N, S), the α minimizing the above equation is

αm = Ω
2
1 −Ω2

2

2S2
, where Ω2

1 =N2 − f 2 and Ω2
2 =

√
4S4 +Ω4

1 . (A 3)

Safely assuming Ω2 6= 0 (around which ω is singular), the minimum frequency is

ωm =ω(αm)=
√

N2 + S2/αm, (A 4)

which is much smaller than N2 as αm � 1. Although (2.7) and (A 4) look very
different, their numeric values are equal up to the third significant digit under the
parameters used throughout this article. Note also that maximizing equation (A 2)
leads to a maximum value for the frequency of

√
N2 + 2S4/(Ω2

1 +Ω2
2 ), which is

larger than N. In any practical case however, the difference is negligible.
The non-hydrostatic expression for the group velocity, equivalent to (2.9), is

cg =
(

c x
g

cz
g

)
=− (1− α

2)S2 + α(N2 − f 2)

(1+ α2)2mω

(
1
α

)
. (A 5)

When ω= f , (A 2) becomes

αf
[(

N2 − f 2
)
αf+2S2

]= 0, (A 6)
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which is the equivalent of (2.11). We still have the αf = 0 solution, while the slope
of the steep characteristic becomes

α+f =−
2S2

N2 − f 2
. (A 7)

When ω 6= f , solving (A 2) for α yields the counterpart of (2.8):

α±ω =−
S2∓√S4 + (ω2 − f 2)(N2 −ω2)

N2 −ω2
. (A 8)

Appendix B. NIWs at fronts on the non-traditional f -plane

If non-traditional (NT) terms, namely terms involving the horizontal component of
the Earth’s rotation, are retained, then so are the non-hydrostatic terms, without which
energy is not conserved.

We now consider waves that propagate purely meridionally, to maximize NT effects.
In our two-dimensional configuration, the front is oriented zonally, with denser
(lighter) water lying to the North (South). The linearized, inviscid, non-hydrostatic,
NT momentum equations now read

vt + fu+
(

f̃ + S2/f
)

w= 0, (B 1)

wt − b+ f̃v =−pz, (B 2)

where f̃ is twice the rotation rate of the Earth times the cosine of the latitude. The
meridional momentum, continuity and buoyancy equations remain the same. Note that
since we have been orienting x̂ in the direction opposite to the propagation of the
waves, the equations above are written in a coordinate system where x̂ points towards
the North and ŷ points towards the West.

Retracing the steps which led to (2.6) and (A 2), we obtain

ω2 =
f 2 +

[
N2 −

(
S2 − f̃ f

)
f̃ /f
]
α2 + 2

(
S2 − f̃ f

)
α

1+ α2
. (B 3)

If f̃ =0, (B 3) is equivalent to (A 2), while if S2=0, it is easily deduced from equation
(2.8) in Gerkema & Shrira (2005), with fs = f̃ (northward propagation of the waves).
In our case, since f is approximately equal to the value near the 45◦ N latitude, f̃ ≈ f .
With the parameters we use, and parameters commonly found in mid-latitude ocean
fronts, we have |S|2/N2 ≈ f̃ f /|S|2 ≈ 1 %, and NT (and non-hydrostatic) terms in (A 2)
can be neglected. We show this further by illustrating the characteristic slopes with
and without NT terms in figure 21, where very little quantitative differences are to be
seen between the two cases.

Note that when considering NIWs, the NT terms are comparable with non-
hydrostatic terms. Therefore, a study of NIWs in fronts which would include
non-hydrostatic effects should also include NT effects, and vice-versa.
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FIGURE 21. Characteristic slopes α±ω , for γ = 0.3 (a), γ = 1 (b) and γ = 2 (c), calculated
using the frontal parameters used throughout this article ( f = f̃ = N/100 = 10−4 s−1,
Ri = 1.05). Characteristics calculated with (grey dashed) and without (black) NT effects
are virtually identical, indicating that for typical fronts, NT effects do not need to be
considered in the physics of critical reflection.

Appendix C. Complex demodulation (CD) filtering
Our CD filtering is strongly inspired by the method of Mercier et al. (2008). The

filter allows us to both extract the spectral content at a given temporal frequency ω
and then separate the upward- and downward-propagating components (understood in
terms of energy propagation) from that signal.

It first extracts the spectral content at the frequency ω:

Ξω(x, z)= 1
T

∫ t0+T

t0

ξ(x, z, t) exp(−iωt)dt, (C 1)

where Ξω is the component of ξ (namely u, v, w or b), oscillating at a frequency ω,
t0 is a given initial time, and T is a duration, which has to be a multiple of 2π/ω (in
practice, ten). In order to retrieve meaningful results, we choose t0 well after the initial
transient phase has ended, which is in practice ten forcing periods. As T increases,
Ξω tends towards the value of the temporal Fourier transform of ξ at the frequency
ω. Ξω is a complex quantity: Re[Ξωeiϕ], where Re denotes the real part and ϕ a real
number, is a reconstruction of the oscillation at a given phase, its modulus |Ξω| is
the amplitude of the oscillation and its argument is the phase of the oscillation. In
practice, ξ stands for u or w and Ξ stands for the corresponding U or W.

The second step of the CD filter separates the signal into its upward and downward
components. First, we numerically compute the spatial discrete Fourier transform
(DFT) of Ξω, which yields Ξ̂ω(k, m). In the procedure described by Mercier et al.
(2008), which is valid for classical internal waves, masks applied on Ξ̂ω isolate
upward- and downward-propagating waves, cancelling either positive or negative
wavenumbers depending on which quadrant(s) one wants to isolate. Upward and
downward spectra will be hereafter referred to as Ξ̂ u

ω and Ξ̂ d
ω, respectively, and we

have Ξ̂ u
ω + Ξ̂ d

ω = Ξ̂ω.
For frontal internal waves however, such a procedure is not completely adapted

to discriminate incident (upward-propagating) and reflected (downward-propagating)
waves, because now the radiation pattern is divided into the eight sectors shown
in figure 2. For our simulations, the waves forced by the wave maker are located
in sector (3a) of figure 2. If the reflection is forward, the reflected waves are in
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sector (2a), namely down- and leftward-propagating, such that k < 0. Similarly
to the classical case, incident and reflected vertical wavenumbers have opposite
signs and the standard procedure of Mercier et al. (2008) would efficiently separate
upward and downward waves. However, if the reflection is backward, the reflected
(downward-propagating) waves are located in sector (4b), and the signs of the vertical
wavenumber of the incident and backward-reflected waves are identical and thus
cannot be discriminated based on the criteria of Mercier et al. (2008). In this specific
case of backward-reflected waves, we therefore use the isopycnal slope to isolate the
two signals, i.e. our mask cancels either the wavevectors for which k > S2m/N2 or
for which k< S2m/N2, which yields Ξ̂ u

ω and Ξ̂ d
ω, respectively.

At each step of the CD filtering algorithm, we use the crudest masks and windows,
for example the first time integral (C 1) amounts to computing a Fourier transform
with a rectangular window, which is ten forcing periods wide. Because the signal
is mostly periodic, significant distortion of the signal is not to be expected. The
direct and inverse DFTs are computed without taking into account that the signal
is not periodic in the vertical; however this does not qualitatively affect the results.
Likewise, the masks applied to Ξ̂ω do not include any windowing and yet do not
induce distortions strong enough to affect our conclusions.
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