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Abstract

Several processes lead to mixing and transport in the ocean, among those being the interaction of the internal gravity wave field
with bottom topography. The latter process is considered in the present work, through joint laboratory experiments and numerical
simulations. The basic configuration is a plane wave of finite extent reflecting onto a sloping bottom in a uniformly stratified fluid.
As expected, the interaction between the incident and reflected waves produces harmonic waves, but an irreversible wave-induced
mean flow grows in the interacting region between those waves, whose amplitude may be larger than that of the incident wave.
This mean flow appears to be controlled by nonlinear and dissipative effects associated with the reflected wave component. Unlike
in the atmosphere, the role of this wave-induced mean flow has been completely overlooked in the ocean.
c© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Institution of the Russian Academy of
Sciences A. Ishlinsky, Institute for Problems in Mechanics of the RAS.
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1. Introduction

The main sources of energy for internal gravity waves in the ocean are the tide and the wind [1]. Tide flowing over
the bottom topography of the ocean (the bathymetry) generates internal gravity waves referred to as the internal tide,
with frequency equal to that of the tide. The wind creates internal gravity waves in the upper layer of the ocean with
frequency close to the inertial frequency. Quite remarkably, these waves are able to propagate toward the bottom of
the ocean ([2]); the associated process is subtle, resulting from the interaction of near-inertial waves with meso-scale
turbulence in the upper layer [3]. Another process, indirectly due to the wind, currently forms a new field research. It
is linked with the Antarctic Circumpolar Current in the Southern Ocean which is locally barotropic and can therefore
interact with the bathymetry. Like the wind blowing over topography in the atmosphere, lee waves are very likely
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generated by the Antarctic Circumpolar Current [4] whose breaking may account for intense mixing measured in the
deep ocean in several regions of the Southern Ocean [5]. In the present paper we focus on the internal tide.
The interest of the oceanic community in internal gravity waves lies in their capacity to fluid mixing, especially in

the deep ocean where motions are generally dominated by these waves. Mixing results from energy transfers toward
small scales through various processes such as, for the internal tide, parametric sub-harmonic instability [6]. While
mixing is associated with a vertical transport of heat and mass (downward and upward, respectively), internal gravity
waves can also induce horizontal mass transport [7]. It is indeed well-known that waves, whether dispersive or not
(such as surface gravity waves or sound waves), induce an irreversible mean flow when propagating in a dissipative
medium [8]. Mixing and wave-induced mean flow may be considered as processes by which the wave-induced energy
is transferred toward small and large scales respectively. While mixing has been and is still intensively studied, very
little work has been performed on wave-induced mean flows in the ocean and their impact on ocean dynamics [9].
Mean flow changes by momentum deposition of the internal tide are addressed in the present paper, through the
nonlinear reflection of a plane wave of finite extent onto a simple slope in a stably-stratified medium of constant
Brunt-Väisälä frequency N.
In such a medium, the dispersion relation of plane internal gravity waves is

ω2 = N2sin2 θ , (1)

where ω is the wave frequency (assumed to be positive) and θ , the angle of the group velocity with the horizontal. For
an object oscillating at frequency ω in a fluid of constant N (with ω < N), this relation implies that the propagation
of energy is anisotropic, occuring only in directions making an angle θ = asin(ω/N) with the horizontal [10, 11] and
referred to as beams.
The reflection of an incident wave onto a slope leads to a reflected wave with the same frequency ω . The conser-

vation of wave frequency upon reflection implies, from the anisotropic dispersion relation (1), that the angle of the
group velocity θ is also conserved upon reflection. As shown by [12], the wave may be focused upon reflection, which
results in the increase of its amplitude and wavenumber by a factor γ = sin(θ+α)/|sin(θ−α)| for a slope of constant
angle α . For θ close to α , focusing leads to nonlinear processes [13] and organized structures sometimes referred as
bores [14]. This situation is referred to as critical incidence. Away from critical incidence conditions, opportunity for
nonlinear processes and therefore transport property is usually assumed to be rather rare which motivated the search
for resonant interactions by [15] further discussed below.
As is well-known, the nonlinear interaction between the incident and reflected waves generates harmonic waves of

frequency nω , which propagate if nω <N owing to the dispersion relation. The area where these waves superimpose,
and therefore interact, will be referred to as the interaction area hereafter. The key point of the present paper is that a
strong mean flow is also generated in this interaction area, the main contribution coming from the reflected wave. By
strong, we mean that the mean flow amplitude may be larger than the incident wave amplitude. Such a mean flow has
been missed in previous studies on wave reflection due to geometrical confinement. The nonlinear interaction between
an incident and a reflected wave has indeed been addressed in several papers in a two-dimensional (or a quasi-two-
dimensional) configuration, thereby preventing the intrinsically three-dimensional (as discussed in the section 6.2)
mean flow from occuring. The seminal theoretical paper by [15] thus investigated the conditions in a (α , ω) space for
an incident plane wave and its reflected counterpart to form a resonant triad with a second harmonic wave resulting
from the interaction between those waves. The occurence of such resonant interactions on a simple slope has also
been investigated numerically and experimentally, but never quantitatively reproduced so far [16, 17]. In the present
study, we consider the interaction of an incident and a reflected plane wave with a finite number of wavelengths in a
three-dimensional configuration to allow for all components of the flow to develop.
The outline of the paper is as follows. The next section is devoted to a brief account on wave-induced mean flows.

The reflection on a simple slope has been studied using laboratory experiments and both two- and three-dimensional
numerical simulations. The set-ups are presented in section 3. The overall behavior of the flow as obtained from these
three approaches is described in section 4 while a detailed harmonic analysis is conducted in section 5. We focus on
the wave-induced mean flow in section 6 and conclude in section 7.
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2. A brief account on wave-induced mean flow

A fundamental property of waves is they transporting the energy and the momentum of the source which creates
them, without mass transport if the waves are steady, linear and non dissipative. This is the non acceleration theorem
[18]. It follows that, for a small-amplitude wave, either transient or nonlinear effects accelerate the flow, thereby
modifying the ambient mean flow or inducing a mean flow if the fluid is initially at rest. In a non dissipative medium,
the mean flow response to wave transience or wave nonlinearity is bounded in time and reversible, while those mean
flow changes may be cumulative in time and irreversible in a dissipative medium. In the latter case, mean motions
can have a major effect on the flow such as interacting with the waves themselves. The amplitude of the mean flow is
proportional to the square of the wave amplitude, attesting that nonlinear interactions are a basic ingredient in mean
flow generation (see [19, p. 98]). An alternate argument is that a process leading to a frequency equal to ω −ω is
required to create the mean flow.
The occurence of a dissipative mean flow can be easily conceived from momentum conservation : as the wave

progresses forward, the wave-induced momentum flux decreases through molecular effects so that momentum is
deposited by the wave as it propagates. This momentum deposition may be expressed as a force exerted on the fluid,
which accelerates the fluid and produces the mean flow [20].
As usual in fluid mechanics, either an Eulerian or a Lagrangian point of view can be adopted to express the flow

properties and so is also for averaging. The Eulerian mean flow is obtained by computing, at a fixed position, the
average of the fluid velocity over a given time. The Lagrangian mean flow is computed from the average of the
velocity following the motion of a fluid particle during the same time. As shown by [21], the Lagrangian mean flow
is the sum of the Eulerian mean flow and of the Stokes drift velocity. The Lagrangian mean flow may vanish while
the Eulerian mean flow does not: in this case, no mass transport occurs (an example will be provided below). A
Lagrangian mean flow is therefore fundamentally associated with mass transport.

3. Experimental and numerical setups

3.1. Experimental set-up

Laboratory experiments have been performed on the Coriolis Platform in Grenoble [22]. As sketched in Figure
1, a key aspect of the experiments is the use of a wave generator designed to produce a plane wave and originally
designed to facilitate comparison with theoretical predictions [23]. In front of the wave generator, a sloping boundary
of inclination 10%, corresponding to an angle α ≈ 5.71◦ with the horizontal, extends over 4 m in the longitudinal (x)
direction and over 4.5 m in the lateral (y) direction. The reflection region is therefore unaffected by side effects. The
tank is stably-stratified with brine and an initial constant stratification profile is imposed, with N = 0.41 rad ·s−1. The
tank is non rotating.
Experiments have been performed using different forcing frequencies ω , and hence, from the dispersion relation,

different angles θ of the incident wave field. In the present study, we consider the flow behavior obtained for a wave
period equal to 42.16 s (so that ω = 2π/42.16 % 0.15rad ·s−1), corresponding to θ = 18.6◦. Since the slope angle α
is equal to 5.71◦, the focusing factor γ defined in the introduction has a value of 1.84.
The generator produces a beam with 4 wavelengths, the horizontal (along the x−direction) and vertical (along the

z−direction) wavelengths being 0.42 m and 0.13 m respectively; the plane of this incident beam is normal to the
sloping boundary. Velocity measurements are inferred from Particle Image Velocimetry using a vertical laser sheet
located in the center of the incident beam; the vertical plane of this laser sheet is referred to as the (x,z) plane in Figure
1b and in the remainder of the paper.

3.2. Numerical set-up

Two- and three-dimensional numerical simulations have been carried out in order to reproduce the laboratory
experiments. Two different codes have been used, the Symphonie-NH ocean model developed by F. Auclair [24] and
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Fig. 1. Sketch of the experimental set-up viewed from the side (a) and from above (b). The dashed line in frame (b) marks the vertical laser sheet
where PIV measurements are performed.

the NHOES1 code written by H. Aiki [25], respectively. The major difference between these codes is the vertical
coordinate, which is of the sigma-type in the former code (the sigma coordinate follows the topography, varying
smoothly from the sloping boundary to the -near flat- free surface) while a cartesian coordinate is used in the NHOES
code. The horizontal coordinates are of the cartesian type in both codes.
These codes solve the non hydrostatic Boussinesq equations, with a linear equation of state. The initial condition

consists of an analytical plane wave solution in a vertical plane, whose extension is limited by a smooth envelope both
in the y- and z-direction, of width % 1.85m and % 0.9m respectively, to mimick the wave generator. The horizontal
and vertical wavelengths are those of the laboratory experiments. At the top of the numerical domain, the boundary
condition is a free surface (being solved explicitly in the Symphonie-NH code and implicitly in the NHOES code),
while a free slip boundary condition is used at the bottom. At the left boundary, the incident finite extent internal
gravity wave is produced thanks to a restoring layer in which all variables (velocity components and density anomaly)
are restored toward the modulated analytical plane wave solution just discussed. In order to avoid spurious reflections,
a sponge layer is implemented at the right boundary in which all variables are restored toward 0.
The size of the numerical domain is close to that of the laboratory experiment, namely 2.56m in the x− direction,

up to 7.68m in the y−direction and 0.8m in the vertical direction. The resolution of the computations is Δx×
Δz = 1cm× 0.5cm along the x and z directions respectively, with Δy = 1cm in the three-dimensional code. Two-
dimensional simulations with a Δx×Δz= 2mm×2mm resolution have also been carried out, showing no important
differences with the coarser resolution runs. For computational cost reasons, the first and coarser resolution has been
retained.
The same values of the Brunt-Väisälä frequency N and of the forcing frequency ω as in the laboratory experiments

are used. The diffusivity and viscosity are molecular and isotropic and respectively equal to κ = 1.49×10−9 m2s−1
and ν = 10−6 m2s−1 (the Prandtl number is therefore equal to 700, which is the value for salted water).

4. Overall behavior of the flow

A steady regime is reached in less than 10 periods, both experiments and simulations having been run for about
30 wave periods. A snapshot of the horizontal component of the velocity field u is displayed in Figure 2 in the
vertical (x,z) plane during the steady regime, for the laboratory experiment (left frame) and the corresponding two-
dimensional (middle frame) and three-dimensional (right frame) simulations. The wave propagates from left to right.

1Non Hydrostatic Ocean Model for the Earth Simulator.
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An apparently complex flow pattern emerges, made of (i) the incident wave, (ii) a reflected wave and second-harmonic
waves of weaker amplitude in the two-dimensional simulation (and possibly in the experiment) while these waves are
hardly visible in the three-dimensional simulation and (iii) a stronger signal in the interaction area between the incident
and reflected waves in the three-dimensional configurations (experiment and simulation). A basic understanding of
the flow requires a harmonic analysis which is now presented.

Lab Experiment 2D Numerical Experiment 3D Numerical Experiment

X [cm]

Z
 [

c
m

]

 

 

0 50 100 150 200 250−80
−60
−40
−20

0

−3
−2
−1
0
1
2
3

X [cm]

Z
 [

c
m

]

 

 

0 50 100 150 200 250−80
−60
−40
−20

0

−3
−2
−1
0
1
2
3

Fig. 2. Snapshot of the laboratory experiment (left) and of the corresponding two-dimensional (middle) and three-dimensional simulation (right)
for the x-component of the velocity field during the steady regime, for N = 0.41s−1, ω = 0.15 rad ·s−1 and α ≈ 5.71◦. The velocity unit is mm ·s−1
and the green (left frame) and grey (middle and right frames) triangles represent the sloping boundary.

5. Harmonic analysis of the flow

5.1. First harmonic waves (incident and reflected waves)

The horizontal velocity component filtered out at the forcing frequency ω over the last 8 periods (2π/ω) of the
experiment and simulations is displayed in figure 3. This filtered field is therefore contributed by the incident and the
reflected waves only. When compared with the experiment, the incident wave is remarkably reproduced by the two-
and three-dimensional numerical simulations, both in structure and amplitude. An interference pattern is visible in
all three frames in the area where the incident and reflected waves superimpose. Differences appear for the reflected
wave: the amplitude of this wave vanishes very quickly away from the interaction area in the experiment and in the
three-dimensional simulation while being present in the two-dimensional simulation, though with a weaker amplitude
than the incident wave. According to linear inviscid theory, the amplitude of the reflected wave should be larger by a
factor γ than the incident wave amplitude but its width should be smaller by the same factor, making it more sensitive
to diffusive damping than the incident wave. Along with the transfer of energy toward second harmonic waves, this
accounts for the observed weaker amplitude in the two-dimensional simulations [26]. It clearly appears however that
a process acts in the laboratory experiment and in the three-dimensional numerical simulation which further lowers
the amplitude of the reflected wave. This process should therefore be three-dimensional.

5.2. Second harmonic waves

The horizontal velocity component now filtered at the second harmonics of the forcing frequency (2ω) is plotted in
Figure 4. A clear 2ω-wave has developed, whose maximum horizontal velocity is about one third of the primary wave
maximum horizontal velocity. This wave results from the nonlinear interaction between the incident and reflected
waves and therefore grows from the interaction area of these waves. The 2ω-wave is of larger amplitude in the two-
dimensional simulation, consistent with the reflected wave being larger in this two-dimensional configuration as well,
as just discussed. In the simulations, the 2ω-wave has reflected on the free surface and on the sloping boundary. We
observe also that the 2ω-wave is refracted near the topography in the three-dimensional configurations and, to a lesser
extent, at the free surface in the experiment, while no such refraction is visible in the two-dimensional simulation. The
refraction at the free surface is due to a thin mixed layer which develops in time from the surface. As for the bottom
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Fig. 3. Comparison of the experiment (left), two-dimensional (middle) and three-dimensional simulations (right), for the horizontal component of
the velocity field filtered at the forcing frequency over the last 8 wave periods. The dotted lines mark the boundaries of the incident and reflected
waves as predicted by linear inviscid theory. The experiment and simulations have been performed over 30 wave periods. The velocity unit is
mm ·s−1 and the grey triangle represents the sloping boundary.

refraction, it results from the Doppler shift of the intrinsic frequency of the second harmonic wave in the interaction
area, where a wave-induced mean flow grows in time, as we now discuss.
Note that no third harmonic wave component is produced since 3ω > N.
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Fig. 4. Same as figure 3 except that the filtering process has been performed at twice the forcing frequency.

6. Wave-induced mean flow

6.1. Description

The mean flow is computed by a temporal average over the last 8 forcing periods and displayed in Figure 5 for
the experiment and the simulations. This mean flow is therefore Eulerian and we recall that its associated Lagrangian
mean flow may vanish or not; in the latter case, a net mass transport occurs. Figure 5 shows that the mean flows
computed in the two- and three-dimensional simulations strongly differ. In the two-dimensional simulation, the mean
flow is an along-slope current which is periodic along the direction normal to the slope. This Eulerian mean flow is
generated by the interaction of the incident and reflected waves and has been predicted by [15] from a weakly nonlinear
and inviscid two-dimensional analysis. We verified indeed that the wave vector normal to the slope is equal to the
difference in the reflected and incident wave vector components along this direction as predicted by [15]. As noted by
[15] also, the associated Lagrangian mean flow is zero in an inviscid fluid to account for the material conservation of
density. We note that the amplitude of this two-dimensional mean flow is at most one third of the maximum horizontal
velocity of the incident wave.
In the three-dimensional configurations by contrast, a stronger mean flow appears, which grows in time, reaches an

amplitude comparable to (and even larger than) that of the incident wave and has a different structure. As recalled in
section 2, this mean flow fundamentally depends upon nonlinear effects and, since it is irreversible and cumulative in
time, upon dissipative effects as well (the associated Lagrangian mean flow should therefore be non zero). This mean
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Fig. 5. Same as figure 3 except that the horizontal velocity component has been averaged over the last 8 periods of the experiment and of the
numerical simulations. The Eulerian mean field is therefore displayed.

flow is horizontal, does not occur in the two-dimensional simulation but is well reproduced in the three-dimensional
simulation, implying that it is intrinsically three-dimensional. Note that the signature of the two-dimensional Eulerian
mean flow predicted by [15] is also visible in the three-dimensional simulation.

6.2. On the three-dimensional nature of the mean flow

From a theoretical point of view, the wave-induced mean flow lies along the x component of the wavevector
of a two-dimensional wave propagating in a (x,z) plane ([19]). In the present case however, the medium is not
homogeneous along the x− direction because of the sloping bottom. The wave generator being of finite extent along
the y−direction, the wave-induced mean flow can recirculate in the horizontal plane, which gives a vertical component
to the vorticity field. The distribution of potential vorticity is therefore modified. Since linear internal gravity waves do
not have potential vorticity [27], the flow in the present study does not possess any potential vorticity at the initial time,
when the incident wave field is generated. Because the potential vorticity is conserved by nonlinear and dissipative
effects [28], the redistribution of potential vorticity by the wave dynamics should yield an even number of vortices so
that the volume-averaged potential vorticity is zero [20]. In the present case the potential vorticity field is dipolar as
we show now.
The potential vorticity field is displayed in figure 6 at 30 wave periods (with an average over the last period) for

the three-dimensional numerical simulation, along with the associated velocity vectors. This field is organized as a
dipolar structure, consisting in two vortices with a radius of the order of half the width of the envelope along the
y-direction. This radius is therefore set by the length scale of problem in the y-direction, as this is expected in this non
rotating case [29].
This mean flow refracts the wave field in the interaction area which leads to the distortion observed in this area

in figure 4. We briefly explain below why this mean flow, along with dissipative effects (and the generation of a
harmonic wave), accounts for the nearly vanishing reflected wave outside the interaction area in the experiment and
in the three-dimensional simulation.

6.3. Theoretical approach

The equation for the acceleration of the wave-induced mean flow can be written in a two-dimensional vertical plane
as a first step. In the inviscid case, this acceleration term yields the Eulerian mean current predicted by [15], whose
associated Lagrangian mean flow is zero.
Further theoretical analysis shows that when viscous effects are taken into account, this Eulerian acceleration term

is unchanged (except for a damping coefficient due to viscosity) and another acceleration term appears, which is
proportional to the viscosity. Let us denote this term by AL. It is contributed by the incident wave, by the reflected
wave and by the interaction between those waves. It can be shown that AL fundamentally depends upon focusing
effects through the factor γ . Indeed, the main contribution to AL comes from a factor γ5 in front of the reflected wave
term while, comparatively, this coefficient is 1 for the incident wave and γ for the interacting term. Hence, the mean
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Fig. 6. Contours of the potential vorticity field at 30 wave periods (with an average over the last period) at 60 cm below the free surface.

flow present in the three-dimensional configurations is mainly fed by the reflected wave, because of focusing. Only if
reflexion occurs on a flat bottom, namely γ = 1, does AL become dominated by the interacting term.

7. Conclusion

The purpose of this work was to investigate the nonlinear reflexion of a plane wave incident onto a sloping boundary
through joint laboratory experiments and numerical simulations. The simulations were first performed in a two-
dimensional vertical plane and were aimed at examining the theoretical predictions of [15] about resonant interactions
involving the incident, reflected and second harmonic waves [26]. The laboratory experiments performed on the
Coriolis Platform soon revealed a strong discrepancy with the two-dimensional simulations because of the generation
of an irreversible wave-induced mean flow in the region where the incident and reflected waves superpose. Three-
dimensional simulations were then carried out, and the present work focuses on this mean flow. Preliminary results
were reported in [30].
The novel result of the present work is that the acceleration of this mean flow is controlled by the focusing of the

reflected wave component. As a result, the mean-flow amplitude becomes of the same order as that of the incident
wave after a few wave periods or so, namely a few days in the ocean. In addition to modifying wave propagation,
and to possibly leading to strongly nonlinear effects through the formation of a critical layer [31], the main property
of this mean flow is mass transport, an important issue in the deep ocean where routes to fluid mixing are seeked for.
Note that, because mixing results in irreversible changes in the background density profile and fundamentally depends
upon dissipative effects, this irreversible wave-induced mean flow may be considered as the kinematic part of mixing.
Since this mean flow is created near the topography, how it would modify- or survive in- a turbulent boundary layer
is certainly an important point which also deserves further study. In any case, the occurence of such a mean flow in
the ocean has been almost completely overlooked in the literature [32] and research should be launched on this issue.
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