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Simple stochastic models and direct nonlinear numerical simulations of three-
dimensional internal waves are combined in order to understand the strong horizontal
particle dispersion at second-order in wave amplitude that arises when small-amplitude
internal waves are exposed to weak dissipation. This is contrasted with the well-known
results for perfectly inviscid internal waves, in which such dispersion arises only at
fourth-order in wave amplitude.
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1. Introduction

We report on a somewhat surprising numerical result and on its tentative theoretical
explanation in connection with our previous studies of particle dispersion by random
waves in Biihler & Holmes-Cerfon (2009) and Holmes-Cerfon, Biihler & Ferrari
(2011). . These studies addressed the fundamental question of how non-breaking small-
amplitude gravity waves can contribute to the irreversible quasi-horizontal spreading
of particles along stratification surfaces at very small scales, all with an eye towards
applications in oceanography. In common with previous studies of similar questions
(e.g. Herterich & Hasselmann 1982; Sanderson & Okubo 1988; Weichman & Glazman
2000; Balk, Falkovich & Stepanov 2004; Balk 2006), we modelled the linear wave
field as a stationary random process with a power spectrum that is strictly zero at
zero frequency, which implies that the linear velocity field cannot by itself give rise to
any diffusion in the sense of Taylor (1921) (see §2 below). The physical motivation
for this assumption was that the frequency of inertia—gravity waves is bounded from
below by the Coriolis parameter f, which provides a natural non-zero frequency cut-off
everywhere away from the equator.
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This implied that particle diffusion could arise only via advection by the wave-
induced Lagrangian-mean flow at second-order in wave amplitude. Specifically, if in
terms of the non-dimensional wave amplitude a < 1 the usual wave energy E, and
the wave-induced Lagrangian-mean flow are O(a?), then the leading-order diffusivity
D, which is quadratic in the advecting velocity, satisfies D = O(a*), i.e. D & E(Z). Our
implicit presumption was that this result, which was derived assuming unforced and
inviscid random waves, would continue to hold approximately for waves that are
maintained in a prescribed stationary state by the combination of weak forcing and
damping, provided only that the damping rate «, say, is reasonably small compared to
the frequencies of the waves.

However, recent direct nonlinear numerical simulations of internal waves in the
three-dimensional rotating Boussinesq system (detailed below in §4) instead robustly
produced values for D that were in fact proportional to Ey, and not to E3 as predicted
by theory. This held even for quite weak wave damping and forcing (e.g. the damping
rate is only 2% of the wave frequency in the typical case displayed in figure 3
below). Notably, for small wave amplitude a < 1 the numerically observed O(a?)
particle diffusion was therefore much stronger than the O(a*) diffusivity predicted by
the inviscid theory.

Our subsequent attempt at understanding this surprising result is based on the
sequence of simple stochastic models for forced—dissipative waves enumerated in § 3.
These simple models allow detailed investigations into the interplay between damping
and diffusion and they show clearly that adding damping is a singular perturbation
to the previous inviscid theory: any fixed non-zero amount of damping leads to a
diffusivity D that is proportional to the wave energy Ey, = O(a®) rather than O(a*)
in the limit of small wave amplitude a < 1. In hindsight this result is perhaps less
surprising, because the lack of particle diffusion at O(a?) in the inviscid theory relied
crucially on the exquisite reversibility of linear particle displacements, which is lost
if any non-zero amount of damping is introduced. This is the physical basis for the
singular perturbation that we observed, i.e. the dramatic change from weak, O(a*)
particle diffusion to strong, O(a®) particle diffusion induced by the introduction of
weak dissipation.

The paper is organized as follows. The kinematics of Taylor diffusivity are
summarized in §2 and the simple stochastic models are discussed in §3. The
numerical simulations are detailed and compared to predictions from the simple
models in §4, which includes an explicit scaling law for D in §4.3. Concluding
comments are offered in § 5.

2. Kinematics of Taylor diffusivity

The diffusivity of Taylor (1921) as a measure of particle dispersion is the simplest
quantity that is relevant to understanding the spreading of passive tracers within a fluid
body. The basic theory applies to the time-evolution of a Cartesian particle coordinate
X () defined as

dX () '

T u@®, X0)=0, = X@®= [ u(s)ds. (2.1)
0

Here u(t) is the corresponding Cartesian component of the velocity field, which is

clearly the Lagrangian velocity field following the fluid particle. We will assume

throughout that u(f) is a stationary zero-mean random function with covariance
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function

C(s) = C(—s) = E[u(Hu(t + s)] such that ;imwﬁ:/cmyu 2.2)
0

Here E denotes probabilistic expectation. Assuming this integral converges as t — 00,
this yields the definition of the diffusivity D, i.e.

[e’e) 1 R
D= / C(s)ds = EC(O) such that E[X?] ~ 2Dt for large . 2.3)
0

The second form for D uses the power spectrum C (w) defined via the Fourier
transform

n +o00 ) 1 +00 A
Clw) = / e C(s)ds and C(s) = I / e C(w) dw. (2.4
o T J o
Finally, if we define the Lagrangian auto-correlation time scale as
/“a@d 1C(0) D
= S = ——— =
o C0) 2C0)  E[u’]
At fixed E[u?] the diffusivity D is simply proportional to t.

then D = E[i?] t. (2.5)

3. Simple stochastic models for forced-dissipative velocity fields

We consider three simple, exactly solvable linear stochastic differential
equation (SDE) models for the forced—dissipative evolution of a wave-like Lagrangian
velocity field u. Common to these models is that there is a one-parameter family of
possible combinations of forcing and dissipation parameters that maintain the same
variance E[u?], but change the time scale T and therefore the diffusivity D. This is the
key step in order to understand the direct numerical simulations of forced—dissipative
waves that follow in § 4. The three models are gradually increasing in complexity and
relevance, and the third model, which encompasses the other two in suitable limits,
provides the best theoretical guidance for understanding the full internal wave problem.

3.1. Ornstein-Uhlenbeck process
The Ornstein—Uhlenbeck (OU) process for u(r) is defined by the SDE

du
dt

Here the constant parameters o > 0 and B quantify the damping rate and forcing
strength, respectively. Strictly speaking, the white-noise forcing £(¢) is not a function
but a distribution, and it merely serves as a convenient shorthand for the increment of
the Wiener process dW = & dr that necessarily appears in the general theory of SDEs
(e.g. Gardiner 1997). This is sufficient for the simple additive noise examples we are
studying here, but would have to be reconsidered in the case of multiplicative noise,
where B depends on u. The OU process has a stationary distribution with (see the
Appendix)

+oau=p& withE[§]=0 and E[£(#)E(L)] =60t —1). 3.1)

g B

Clo) = s ad C)=7-e (3.2)

0]
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The variance is E[u?*] = C(0) = 8%/2« and hence for the OU process constant variance
of u implies the one-parameter family B2 o «. It then follows from (2.3) and (2.5) that
. B’ (ﬂ2> 1 1
Ornstein—Uhlenbeck: D= —=(—]—- = 1=-—. 3.3)
P 200 ) « o
This illustrates the well-known fact that the OU auto-correlation time scale t is equal
to the damping time scale 1/«. In particular, as the damping rate goes to zero the
diffusivity at fixed variance goes to infinity.

As a model for forced—dissipative linear waves the OU process neatly illustrates the
general point that D is not fixed, but depends on the modelling choice for the damping
rate o. However, the absence of any intrinsic wave dynamics in the evolution equation
for u(¢) rather limits the direct utility of the OU process for the problem at hand. The
two following models improve on this point.

3.2. Linear harmonic oscillator
The linear harmonic oscillator (LHO) is defined by the second-order equation

d’u N du
L=

dr? dr
where the new parameter wy > O is the natural frequency of the undamped oscillator
and B measures the white-noise forcing strength as before (the factor w, has been
inserted to keep the units of § the same as in (3.1)). Damped oscillatory motion occurs
for values of « below the threshold o = 2w,. The case of weak damping, in which
o K wy, is perhaps the most relevant in practice, but we can actually calculate all
our results here without restriction on the size of «. In particular, we obtain (see the
Appendix)

+ = Bonk, (3:4)

2.2 2
Py and D=2" 3.5)
(w? — a)(z))2 +alw?

Clw) = =
(@) 20)3

Remarkably, the diffusivity is independent of « in this expression. However, what is
relevant for us here is the diffusivity at fixed variance of u, and for this we need the
covariance function, which for o < 2w is

ﬁZ

_ P alsl2 L ith v — , o
C(s)=—e cos(ys) + sin (y |s]) with y = [ |wg .
20 2y

2 (3.6)

In the complementary case o > 2w, the functions (cos,sin) are replaced by
(cosh, sinh), respectively. Either way the variance is again E[u’] = C(0) = 8%/2«a and
we obtain
. . ) B? B*\ « o
Linear harmonic oscillator: D= — = <> — = T=—7. 3.7
2w 200 ) wj wj
This remarkable formula shows that at fixed w, and E[u?] the diffusivity is
proportional to the damping rate « and accordingly goes to zero as o — 0. This
limit is consistent with the earlier argument that a freely evolving linear wave with
non-zero frequency (i.e. wy > 0) has D = 0. However, we also see that any amount
of damping, no matter how small, breaks this condition and delivers a non-zero D
according to (3.7).
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Now, as a model for a linear wave velocity u the LHO improves on the OU process
by introducing a natural wave frequency wy. Still, in a fluid-dynamical model one
would add random forcing in the equation for du/dt, whereas in the LHO equation the
forcing acts on d?u/df* instead. This leads us to the third model.

3.3. Inertial oscillations

The third model is based on the inertial oscillations of a horizontally homogeneous
single fluid layer relative to a state of rest in a rotating frame of reference with
Coriolis parameter f, say. The horizontal velocity vector u = (i, v) and the governing
SDEs are

du
dr

Here &,(¢) and &,(¢) are independent versions of white noise. In the stationary regime
u and v are identically distributed and for their common power spectrum and auto-
correlation function we obtain (see the Appendix)

+ou —fv=p& and %+av + fu = Bé&,. 3.8)

R 1 ’32 ﬂ2 132 s
C(w) = - 5 + 3 and C(s) = — cos(fs)e”*"'. (3.9)
2\(@+) +a?  (w—f) +a? 2
Comparing (3.9) with (3.2) it is clear that this is the natural generalization of the OU
process to the case of a natural wave frequency f. Once more the variance of u is
B%/2a and the diffusivity is

1 2 2
Inertial oscillations: D = — P = ﬂ— Y = 1= L. (3.10)
2f2 + 0[2 2o f2 + Ol2 f2 + aZ

The time scale of this process interpolates between the former two: for small « it
approximates the LHO with t o< o whilst for large « it approximates the OU process
with T o« 1/a. As will be shown below, this is essentially what we observe for the
Taylor diffusivity in direct numerical simulations of wave-induced particle dispersion
due to forced—dissipative internal gravity waves.

4. Direct numerical simulations

We describe direct numerical simulations of small-amplitude internal waves using a
fully nonlinear three-dimensional numerical model for the rotating Boussinesq system
with linear damping and white-noise wave forcing in time.

4.1. Numerical set-up

We use a modification of the pseudo-spectral model of Winters, MacKinnon & Mills
(2004), which solves

u,+ w-Viu+fixu+VP—-bz=+%u—au,+F, (4.1a)
b+ w-V)b+Nw=+%hb—ab, and V.u=0. (4.1b)

Here u = (u, v, w) is the velocity vector, f = 10~* s=! is the Coriolis parameter, Z is
the vertical unit vector, P is the scaled pressure fluctuation, b is the buoyancy, and
N =107 s7! is the constant buoyancy frequency. The dissipation operator % is

To =+ (ven @ + 82"+ ) “2)
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where vgy and vg, are horizontal and vertical dissipation coefficients. The additional
damping related to «, is discussed below (4.6). Our numerical domain is a
triply periodic rectangular box with horizontally square cross-section of side length
L =1km and vertical height H = 3L = 100 m, so the aspect ratio § =f/N = 1/10.
The numerical grid is flattened in the vertical and the domain is discretized with
n =96 points in all three directions. We choose vg, = §vgy.

All fields X are expanded into discrete Fourier series of the form

X(x,y,2,0) =Y Xun(0) expli (kx + Iy + m2)], (4.3)
k,,m
where (k, [, m) can take values from the discrete sets {—n/2+1,...,n/2} x 2xn/L.

The reality condition X* " ) = = Xy is enforced numerically by evolvmg the fields for
k > 0 only and then extending the results to k < 0 by complex conjugation.

The wave forcing F based on white noise in time is designed to have no effect on
the linear potential vorticity (PV) of the system, which is ¢ =7« (V x u) + fb./N>.
Otherwise the forcing would produce an unwanted balanced, PV-controlled flow at the
same order as the waves, which would dominate the particle advection. This requires
that 7+ (V x F) =0, and we also find it convenient to enforce V - F = 0 because
any divergent part of F is absorbed by the pressure gradient. In spectral space this is
achieved by

—km
- 1 - -
szm(t)zr X —Im| &) and F* ., (1) =Fu,(), 4.4)
H 2
kH

where K = \/k} +m?. Here & = &; + i&; is a complex normal random variable
(independent from time step to time step) with independent real and imaginary parts &g
and &; such that at each numerical time step with step size At

E [tr/] =0, E[&&1=0 and E [62,] = 204,mEun/At. (4.5)

Here oy, = vGHkg + vem®, At =100 s the numerical time step and Ey,, is a spectral
energy density that is related to the expected energy by

1
Ey=3E | +v* +w' + ] > Eun. (4.6)

k,l,m

For time stepping a third-order Adams—Bashforth (AB3) scheme is used for all terms
except the random force, which is instead advanced using forward Euler. To minimize
aliasing whilst maintaining numerical accuracy, 1/9 of the wavenumbers are truncated
following Patterson & Orszag (1971).

There is one important caveat that we need to mention. Although F as defined does
not project onto the linear PV, in the presence of internal waves it does project on the
exact nonlinear PV defined by Q = V(N?2+b) -(V x u+f%2) via the O(a®) forcing term
Vb - (V x F), which will produce an unwanted balanced flow at O(a?). Although this
is much smaller than the O(a) waves, this nearly steady balanced flow can still lead
to significant particle advection and hence we have found it necessary to continuously
damp the balanced flow. To this end we diagnose at each time step the linear balanced

719 R4-6



Strong particle dispersion by weakly dissipative random internal waves

(a) (b) (x 10%)

m (m-1)

0 -1 i
02  -0.1 0 0.1 02 [(m=l) 02 =02 k(m)

FIGURE 1. Snapshots of the scaled horizontal divergence (u, + v,)/f = —w./f for E, =
2 x 107°m?s™2 and ag/wy = 2.4 x 107 in (@) physical space and (b) spectral space (the
absolute value of the Fourier transform is shown). The non-dimensional wave amplitude is
~10 % in this example.

flow (ug,, b,) from the instantaneous ¢ via a quasi-geostrophic stream function , i.e.

f2
ﬁ‘ﬂzz =q and u,=—v,, v,=v%., w,=0, b,=fy. (47)

This linear balanced flow is then damped with decay rate o, = 1/250 s

Vi + 1pyy +

4.2. Results for particle dispersion and diffusivity D

All numerical experiments are executed using the same functional form of the wave
energy spectrum localized at a central frequency wy and a scaled wavenumber K, via

Eum = (Eo/np) X 1_pwjp<o-wy<tbo2 X 1_akyp<k,—Kko<taky/2- (4.8)

Here np is the number of modes for which Ejy,, # 0, the indicator function 1y is unity

if X is true and zero otherwise and
VN + mf?

L /k2 82 2
SV O (kg m) = ¥ (4.9)
n

are the scaled total wavenumber and the positive inertia—gravity wave frequency,
respectively. We use wo/f =2.06, Aw/f =2.01, K, =0.56 and AK; = 0.08. Hence
the central wave has horizontal and vertical wavelengths of ~43 and 8 m, respectively,
and its frequency is near-inertial, which makes the simple model § 3.3 relevant with
w, replacing f. Figure 1 shows snapshots of the wave field in both physical and
spectral space, where the signature of the forcing in spectral space is clearly seen. The
damping rate oy, does not vary much over the range of excited wavenumbers in (4.8)
and we will simply denote its average over these wavenumbers by «y.

We seed the fluid with 64 Lagrangian particles in a regular 4 x 4 x 4 pattern (see
figure 2). To maximize the distance between particles, a rudimentary staggering of
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(@) P (b)
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C e 937 ' ”
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FIGURE 2. Three-dimensional view of the particle trajectories in the example from figure 1.
(a) All particle trajectories, enlarged 10 times for clarity. Particles are colour-coded as a function
of their initial altitude: darker means lower. (b) A single particle trajectory in actual size with
colour indicating time from ¢ = 0 (dark) to r = 600 days (light). The trajectory is dominated by
inertial circles superimposed on a weak random walk.

®) 200
150
100
50
0 100 200 300 400 500 0 100 200 300 400 500
t (days) t (days)

FIGURE 3. Statistics on particle displacements for ag/wy = 2.0 x 1072 and (a) Ey = 10™° m? s~2
and (b) Ey =5 x 1071 m? s72. Shading: area centred around the median position where 50 %
of the particles are found. Black line: estimated R?, which equals 4Dt under Taylor diffusion. A
comparison shows very clearly that the slope 4D  E,.

the initial horizontal positions across the vertical direction is implemented. Finally,
contrary to what is described in Winters et al. (2004), the velocity at each particle
position 1is interpolated from the Eulerian velocities at the neighbouring grid points,
without communication between processors in parallel configurations, and an AB3
scheme is used to advect the particles.

We assume that the particles are experiencing horizontal Taylor diffusion if

R*=E [R}] =4Dt, where R, = \/ (= x0)> + (i — o) (4.10)

is the horizontal displacement of the ith particle. The expectation is estimated by an
average over all particles and over eleven independent runs. Figure 3 shows R? as a
function of time in two cases with weak damping, indicating that R? is proportional to
time and also that D &« Ey = O(a?) instead of the inviscid prediction D « E} = O(a*).

4.3. A diffusivity scaling law for very weak damping

Letting ap/wo — 0 at fixed amplitude a presumably recovers the O(a*) diffusivity
of the inviscid theory. Now, for very weak damping with «y/w, comparable
to O(a*) we expect this inviscid O(a*) diffusivity to be comparable to the
forced—dissipative O(a®) diffusivity. In this regime we may use the theoretical
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(a)  (x1019 (b) (x10-9)
- 251

1012 - A
—~ o" R il + ,
T 8rosy S B *
g T .
W o0 L
i , E ol T +
S Lt ag/op =51 x 1074 o 10 -j- el
Q A"F O ap/wp=10x 1074 :

20 e A ag/wy =20 x 1074 i

& - -- Linear regression
0 1000 2000 3000 4000 0 1 2 3 4 5
o/Ep (sm~?) op/wo

FIGURE 4. (a) D/E2 as a function of «/E,, with inset for deducing D,. (b) D as a function of
ap/wy with constant Eo 10~° m? s~2. Crosses: numerical results; dotted line: tangent at origin;
dashed line: Ao/ (w} + o), where A is deduced from the slope at the origin.

prediction from §§3.2-3.3, namely that the O(a?) contribution to diffusivity is
proportional to «. Both terms can then be taken into account in the asymptotic
scaling law

D
D=aEyD, +E;Dy & E2=<E>D2+D4 4.11)
0 0

Here the parameters D, and D4 depend on the shape of the spectrum, but not on ¢ or
Ey. The second form makes obvious that D/E? is just a linear function of ay/E,. Also,
the theoretical formula (3.7) suggests E[u*]og/w] & agEy D,, which for horizontally
isotropic near-inertial waves implies D, ~ 1/w}.

To test (4.11) we conducted a series of numerical experiments varying both E,
and «. Specifically, E, takes the values 1, 5, 10, 15 and 20 x 107! m? s=2, while
ag/wo ~ 5.1, 10 and 20 x 10~*. Each of these 15 numerical experiments comprises
11-member ensembles, so that statistics for each experiment are computed on
11 x 64 = 704 particles. Experiments are spun up from rest and integrated for 7 = 1200
days (about 3000 wave periods) for ag/wy~ 5.1 x 10~* and 600 days otherwise. We
then compute the diffusivity by averaging R?/4t over the last 1/3 of the integration
time. The results are displayed in figure 4(a) and show very good agreement with
(4.11), yielding the numerical estimates D, = 2.4 x 107 s*> and Dy = 5 x 10° m=2 ¢

This value for D, is very close to the theoretical prediction D, ~ 1/w} = 2.5 x 107 s2.
We also cross-checked at least the order of magnitude of D, by applying the
inviscid theory of Holmes-Cerfon et al. (2011) to the spectrum (4.8), which produced
Dy=1.8x10° m™2 ¢

4.4. Diffusivity for strong damping
In a second series of experiments we explored the behaviour of D for strong damping,
with oag/w, of order unity. In this regime the inviscid O(a*) contribution to D is
negligible. The theoretical prediction from §3.3 suggests that the O(a?) diffusivity
should scale with a/(@j + ), which exhibits a maximum at &y = wy. It is hard to
check this prediction exactly, not least because w varies by 50 % in our spectrum (4.8).
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Still, investigating this by a series of 600 day runs in which E, is kept constant at
107° m? s=2 whilst ay/w, is varied from 5.1 x 107* to 5.1 led to the encouraging
results shown in figure 4(b).

5. Concluding comments

Our direct numerical wave simulations turned out to be compatible with the simple
stochastic model based on (2.5) and (3.10) for the O(a*) horizontal diffusivity due to
internal waves with frequency w, and damping rate «:

o0}

D =E[u*] t = E[4] (5.1)

2 2"
wy + o

For weak damping the relevant auto-correlation time scale is T = ap/w3. Of course,
a practical application of simple stochastic models such as (5.1) first requires an
understanding of the real wave damping mechanisms, which are rarely linear and may
involve wave breaking, and also a justification of the forcing model based on white
noise in time. This is never an easy task in macroscopic fluid dynamics. Still, we plan
to consider these ideas for the internal wave spectrum in the ocean, where estimates
for the highly intermittent decay rate range from a few days to several months (e.g.
Munk 1981).

There is another physical shortcoming of our simple model, namely that once we
allow for realistic wave dissipation we must also allow for the concomitant generation
of PV that inevitably arises at O(a?) in momentum-conserving physical systems (e.g,
Biihler 2000). In our numerical model the PV was strongly damped by design, so
this process was eliminated. We hope to address in the near future the interesting
fundamental problem of particle dispersion due to a self-consistent ensemble of weakly
dissipative waves together with their concomitant wave-induced balanced flows.
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Appendix. Derivation of power spectra in § 3

By definition, the power spectrum C(w) of a real-valued stationary zero-mean
random process u(¢) is the Fourier transform of C(s) = E[u(f)u(t + s)] with respect
to the time lag s. Using (2.4) this can be written in terms of the distributional Fourier
transform i(w) = u*(—w) as

+00 +oo
(’L*(w):ziTc / e“w—w’”IE[a(w)iﬁ(a/)]da/=21TE / Eli(w)i* (@)]de’. (A1)

The second form uses E[i(w)i*(w')] =0 if w # . The distribution &t(w) is easily

expressed in terms of the distribution g(w) = é *(—w) by taking the Fourier transform
of the governing SDE; it is this step that ensures that u follows the invariant measure

of the SDE. For example, for the OU process this yields & = ,Bé /(iw + o). Evaluating
(A1) is then straightforward after noting the spectral equivalent of the second of (3.1):

EE(t)EM)] =8(h — 1) < EE(0)E* ()] =280 — o). (A2)
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This immediately yields C(w) and hence the corresponding functions C(s) in
§§3.1-3.2.

The two-variable case in § 3.3 is best analysed using the complex variable z =u + iv
such that (3.8) become the complex SDE dz/df + oz + ifz = B(&; +1&,). The equivalent
of (A1) for the transform Q(w) of the complex auto-correlation function

+00
0(s) = E[z*(z(t + 5)] is then Q(w) = zln/ EZ(@)Z" (o)]de'. (A3)
Using E[€:(w)&;" ()] = 27838 (w — o) this is evaluated as
28° _ B s
© +f)2 e and Q(s) = o e Ve MM,
Note that Q*(—s) = Q(s). From (A 3) it then follows that
O(s) = E[u(Du( + s)1 + Elv@) v + )] + 1 (Elu()v( + 5)] — E[u@®v( —5)]) (AS5)

after using stationarity for the final term. In the present case u(t) and v(¢) are
identically distributed (though not independent) and therefore

O(w) = (A4)

2
C(s) =Elu@®u(t + s)] = %Re 0(@s) = ’23; cos(fs)e I, (A6)
o
Analogously, E[u(H)v(t + s)] = ImQ(s)/2 = —(B%/2a) sin(fs)e *Fl. Finally, (A6)
impligs é‘(a)) = (Q(a)) + Q*(—a))) /4, S0 with real Q(a)) one can also note the shortcuts
D = 0(0)/4, E[u’] = Q(0)/2, and 7 = 0(0)/20(0).
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