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We present a theoretical and numerical study of the effective mean force exerted on
an oceanic mean flow due to the presence of small-amplitude internal waves that
are forced by the oscillatory flow of a barotropic tide over undulating topography
and are also subject to dissipation. This extends the classic lee-wave drag problem
of atmospheric wave–mean interaction theory to a more complicated oceanographic
setting, because now the steady lee waves are replaced by oscillatory internal tides and,
most importantly, because now the three-dimensional oceanic mean flow is defined by
time averaging over the fast tidal cycles rather than by the zonal averaging familiar
from atmospheric theory. Although the details of our computation are quite different,
we recover the main action-at-a-distance result from the atmospheric setting, namely
that the effective mean force that is felt by the mean flow is located in regions of
wave dissipation, and not necessarily near the topographic wave source. Specifically,
we derive an explicit expression for the effective mean force at leading order using
a perturbation series in small wave amplitude within the framework of generalized
Lagrangian-mean theory, discuss in detail the range of situations in which a strong,
secularly growing mean-flow response can be expected, and then compute the effective
mean force numerically in a number of idealized examples with simple topographies.
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1. Introduction
Internal gravity waves play an essential part in the global-scale dynamics of both

the atmosphere and the oceans. This is despite their comparatively short spatial and
temporal scales, which for the most part renders them unresolvable in present-day
computer models for the global circulation. In the atmosphere, the most important
internal-wave effect is the wave-induced vertical transport of angular momentum and
the concomitant effective force exerted on the flow in locations where the waves break
or otherwise dissipate. Here the simplest relevant thought experiment is the lee-wave
problem, i.e. a steady wind blowing over undulating topography that generates upward
propagating internal waves with zero absolute frequency. There is a net drag force on
the topography and, in the simplest setting of zonal averaging applied to a horizontally
homogeneous mean flow, there is an equal-and-opposite effective force exerted on the
mean flow in the regions of wave dissipation. Remarkably, these lee waves are felt
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by the mean flow not where the waves are generated but only where the waves are
dissipated.

The theoretical underpinnings for the computation of the effective force exerted
by dissipating internal waves in the atmosphere are by now very well established
(e.g. Bühler 2009, § 6), and form the basis for all parametrization schemes of such
effects in numerical models. Basically, this classic theory works by exploiting the
zonal symmetry of the assumed wind profile, which makes zonal averaging a natural
procedure in order to distinguish the mean and disturbance parts of the flow. Clearly,
a direct application of this classic theory to the ocean immediately runs into problems
because most oceanic currents are not zonally symmetric even to a first approximation
and therefore one cannot simply apply the classic theory, which has been built around
this approximation. (There is one notable exception, namely the antarctic circumpolar
current, which encircles the globe in a manner similar to atmospheric currents.)

Little progress has been made on this problem, partly for the aforementioned
technical reasons, but mostly because oceanographic interest in internal waves is
focused on their contribution to small-scale mixing and not on momentum transfers.
Indeed, in recent years there has been significant progress in understanding the
role of internal waves in the mixing processes in the deep ocean. This follows the
observational discovery some fifteen years ago that small-scale turbulence levels are
greatly elevated above regions of strong topography, a finding that has been linked to
increased internal wave activity in these regions (e.g. Polzin et al. 1997; Ledwell et al.
2000). Basically, the intermittent breaking of internal waves produces patches of three-
dimensional turbulence, and the small-scale turbulent mixing across these patches then
contributes to the transport of fluid particles across the stable-stratification surfaces
of the ocean, which is a significant part of the functioning of the global overturning
circulation of the ocean. Several source mechanisms for such topographic internal
waves exist. For example, recently Nikurashin & Ferrari (2010a,b) have investigated
two-dimensional lee waves produced by geostrophic currents over periodic random
ocean topography, which is similar to the atmospheric lee-wave problem and can to
some extent be studied using zonal averaging.

Probably the strongest source mechanism for topographic internal waves in the
ocean is provided by the barotropic tides, i.e. the relentless back-and-forth sloshing of
the entire oceanic water column in response to lunar and solar gravitational forcing.
This leads to the generation of so-called internal tides, which are topographically
generated internal waves with frequencies dominated by tidal frequencies. There have
been numerous internal-tide studies in recent years (for a review see Garrett & Kunze
2007), which mostly focus on the wave energy budget and its heuristic links to
wave-induced turbulent mixing (e.g. Muller & Bühler 2009).

In the present paper we augment these earlier internal-tide studies that were focused
on wave-induced mixing by computing the effective force exerted on the mean flow
due to wave dissipation. Basically, our aim is to use the well-studied example of
internal tides in order to put on record a detailed wave–mean interaction problem
involving internal waves and three-dimensional mean flows in the ocean. In keeping
with oceanographic requirements, here we define the mean flow not with zonal
averaging, but with a time average over the fast tidal oscillations. In other words,
we retain the mean flow as a fully three-dimensional time-dependent flow, but we
average over the fast time scale of the internal tides and replace the action of the
waves on the mean flow by a suitably defined effective mean force. This makes the
oceanic theory slightly more difficult than its atmospheric counterpart.
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The theory is worked out in a typical scenario for internal-tide studies: a finite-depth
ocean modelled as a Boussinesq fluid where internal tides are first generated by tidal
sloshing over localized topography and then propagate away to horizontal infinity. Just
as in the atmospheric case, we will recover that the mean flow is affected by the
stationary waves in regions of significant wave dissipation, but not necessarily near the
topographic source region.

In order to facilitate our study we use the simplest model for internal tides,
which combines small-amplitude topography with a small-excursion assumption for
the barotropic tide, i.e. the ratio between tidally induced horizontal particle excursions
and the scale of the localized topography is assumed to be small. By using uniform
rotation and stratification and no basic flow we also ignore all effects to do with
shear, background turbulence, or other forms of inhomogeneity in the water column.
We also use a crude and simplistic model for wave dissipation by allowing for linear
damping in the buoyancy equation. This is blatantly unrealistic for the ocean, but
allows a simple handle with which to model the wave–mean interactions due to
wave breaking in a qualitatively correct way. In this set-up the sought effective mean
force arises at second order in wave amplitude, so we have a standard problem in
small-amplitude wave–mean interaction theory to solve, i.e. the fluid flow is studied
by a regular perturbation approach based on ascending orders in wave amplitude.
We find it convenient to use the generalized Lagrangian-mean formalism to compute
the leading-order mean-flow response, because in the present setting the formalism
offers the simplest mean-flow boundary conditions as well as a useful handle on
the evolution equation for the Lagrangian-mean potential vorticity (PV), central to an
efficient description of the three-dimensional mean-flow dynamics.

We solve for the linear waves using a Green’s function approach similar to that
of Llewellyn Smith & Young (2002), but slightly extended to yield smooth results
over the topography. Our main theoretical result is the expression for the nonlinear
effective mean force and its curl in (4.10) and (4.11) below. The curl of this force
encapsulates the entire forcing of the second-order mean flow due to the first-order
waves, and the vertical component of its curl captures the all-important forcing of the
Lagrangian-mean PV. This is the most important part of the wave–mean interactions
in this problem, because secular growth of the mean-flow response is inevitably linked
to secular growth of the PV, so the strongest interactions are those that project onto
the PV dynamics. We then illustrate the effective force structure with a number of
idealized examples with different topography shapes for which we compute the full
solution numerically. Also, there is a superficial resemblance between our results and
those of a few other studies, most notably tidal rectification studies, so we briefly
discuss the relationship between these theories.

The layout of the paper is as follows. The governing equations and the flow domain
are described in § 2 and the linear wave solution is derived in § 3. The Lagrangian-
mean equations for the second-order mean-flow response and the effective mean
force are derived in § 4. The conditions for secularly growing mean-flow responses
in various configurations are discussed in § 5 and numerical examples for different
topography shapes are presented in § 6. Concluding comments are offered in § 7.

2. Physical and mathematical model for dissipating internal waves
2.1. Model ocean and barotropic tidal flow

The basic ocean set-up is illustrated in figure 1. We consider a standard three-
dimensional Boussinesq fluid model in a domain that is unbounded in the horizontal
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FIGURE 1. Three-dimensional set-up: a rotary barotropic tide of velocity amplitude U0 along
its major axis and γU0 along its minor axis flows over a topography of height h0 and typical
slope h0/L. The buoyancy frequency N and the Coriolis frequency f , both constant, are not
represented. Note that the width of the barotropic tidal ellipse does not scale with the width of
the topography.

directions but finite in the vertical. A Cartesian system of coordinates (x, y, z) is used
such that a rigid flat lid modelling the ocean surface is located at z = H whilst an
undulating lower boundary described by bottom topography is located at z = h(x, y).
We assume that the topography is compact, i.e. h is essentially zero outside some finite
region, which makes undisturbed wave propagation to horizontal infinity a well-defined
concept. The fluid is rotating and although it is unbounded in the horizontal, it is
assumed to be of small enough extent for the Coriolis frequency f > 0 to be taken as
constant; in other words, we are using the standard f -plane approximation. The density
is decreasing with height with constant, real buoyancy frequency N and hence can
support internal gravity waves. N and the latitude are chosen to be large enough for
the non-traditional Coriolis terms to be neglected.

In the absence of topography we envisage that oscillatory tidal forces set the entire
ocean into an oscillation with some frequency ω > f such that there is a barotropic
tide with velocity

U = U0(cosωt, γ sinωt, 0). (2.1)

Here the adjustable parameter γ ∈ [−1,+1] measures the ellipticity of the barotropic
tide (if γ 6= 0, the tide is described as rotary). For example, γ = −f /ω in a simple
model problem in which the tidal forces act in the x-direction only. In the presence
of small-amplitude topography with typical height h0 and horizontal scale L, say, the
barotropic tide will interact with the topography and create so-called internal tides,
which can radiate away from the topography (Bell 1975). It is the mean flow forced
by the dissipation of these internal tides that is our main interest. We will fix the
numerical values of some of the parameters throughout this study: H = 4 km is a
typical value away from continental shelves, f = 10−4 s−1 is correct at latitude 45◦N,
N = 10−3 s−1 is a typical value for the abyssal ocean and ω = 1.4 × 10−4 s−1 is a
good approximation of the frequency of the semi-diurnal tide. Note that f < ω < N, so
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we are considering propagating internal waves. For the topography we set h0 = 100 m
and L = 10 km. We also choose U0 = 1.4 cm s−1, a rather low yet realistic value for
the bottom of the ocean.

2.2. Two asymptotic approximations for the topography
There are two non-dimensional parameters related to the height h0 and the width L
of the topography, and we will build up our model based on the fact that given the
dimensional parameters listed previously, both of these are small. They are

ε = U0

ωL
� 1 and a= h0

µL
� 1, (2.2)

where µ =√(ω2 − f 2)/(N2 − ω2) is the natural slope of internal waves with intrinsic
frequency ω. Here the excursion parameter ε compares the tide-induced horizontal
particle displacements of size U0/ω against the typical horizontal scale of the
topography L. As was first noticed by Zeilon (1912) for the two-layer case and
Bell (1975) for the continuously stratified case, the temporal frequency spectrum of
the internal wave field generated by the tide–topography interaction contains an infinite
number of harmonics of ω unless ε � 1. To make this assumption requires ensuring
that L is large enough, at least a few kilometres; with our choice of parameters

ε = 1
100 . (2.3)

The amplitude parameter a compares the topography slope h0/L against µ. For our
choice of parameters,

µ' 1
10 and therefore a' 1

10 . (2.4)

The weak topography approximation (WTA) a� 1, first developed by Bell (1975) as
well, has two important simplifying consequences. First, it allows one to apply the
lower boundary condition at a flat bottom z = 0 rather than at the undulating bottom
z = h. Second, it makes the waves essentially linear and solutions of our problem can
be viewed as asymptotic expansions in powers of a, where the basic barotropic flow
is O(1), the linear wave field is O(a), and the leading-order mean-flow response arises
from nonlinear wave–wave interactions and is therefore O(a2). Now, we will perform
this expansion in powers of a but we will not attempt to expand in powers of the
other small parameter, ε. Strictly speaking, this requires the restriction ε� a in order
for it to make sense to compute higher-order terms in a but not in ε. In our set-up
ε/a ' 1/10, so there is scope for this scaling regime, although we have not attempted
to justify it rigorously.

2.3. Governing equations in a co-moving frame
In the original frame of reference with coordinates (x, y, z) the topography is at rest
and the standard Boussinesq equations hold (after addition of suitable gravitational
forcing terms for the barotropic tide). However, the total fluid velocity is U + u in that
frame, where u is the velocity in excess of the barotropic tide, and advection terms
involving the tidal velocity U then appear in the governing equations. These advection
terms can be eliminated from the differential equations by switching to a co-moving
reference frame attached to the motion of the barotropic tide. In this frame the ocean
is at rest but now the topography is moving, which incidentally is often the way in
which laboratory experiments on internal tides are actually conducted.
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We therefore switch to co-moving Cartesian coordinates defined by

(x, y, z)= (x − X(t), y − Y(t), z)=
(

x − U0

ω
sinωt, y + γU0

ω
cosωt, z

)
. (2.5)

Here the horizontal tidal excursions X(t) and Y(t) are defined by time-integrating (2.1).
In this co-moving frame the fluid velocity is given by u only and therefore the fully
nonlinear governing equations are

u,t + (u ·∇)u+ f ẑ× u= bẑ−∇p, (2.6a)
b,t + (u ·∇)b+ N2w=−αb, (2.6b)

∇ ·u= 0, (2.6c)

where subscripts preceded by commas denote partial derivatives, and u = (u, v,w) b
and p are the velocity, buoyancy and scaled pressure fields, respectively. Buoyancy
is defined as b = −gρ ′/ρ0, where g is acceleration due to gravity, ρ ′ the density
perturbation, ρ0 a constant reference density, and ẑ is the unit vector for the vertical
axis.

We have added a linear damping term with constant α > 0 to the buoyancy equation
as a crude handle on modelling wave dissipation. Other dissipation terms such as
viscous stresses would work equally well for our purposes, but would involve more
derivatives. Of course, both buoyancy damping and viscous stresses are very crude
models for the actual dissipation of oceanic internal waves, which is likely to be
dominated by nonlinear wave breaking and three-dimensional turbulence. However,
as argued for instance in McIntyre & Norton (1990), the impact on the nonlinear
potential vorticity dynamics of real turbulent wave breaking can be mimicked by
simpler forms of laminar wave dissipation, provided that the laminar dissipation
respects the conservation laws of mass and momentum (Bühler 2000, 2009). For
example, as argued in the last two references, we would get the wrong answer for
the nonlinear potential vorticity dynamics if we applied Rayleigh damping to the
velocity fields in (2.6a). (Note that conserving mechanical energy is a lesser concern
in our case: unlike mass and momentum, mechanical energy is not a macroscopically
conserved quantity because it can be dissipated into microscopic (e.g. thermal) energy,
which is not captured by the Boussinesq equations.)

So, whilst certainly imperfect and simplistic, for the purpose of wave–mean
interaction theory the addition of the buoyancy damping term allows us to capture
the most salient qualitative aspects of real wave dissipation.

The equations are completed by specifying boundary conditions. In the horizontal
directions we apply outward radiation and decay conditions as needed. The no-normal-
flow boundary condition at the ocean surface obviously implies

w= 0 at z= H, (2.7)

but the lower boundary condition requires a little care. In the co-moving frame the
lower boundary is now time dependent and located at z = h(x + X(t), y + Y(t)) and
therefore the generic no-normal-flow boundary condition w= Dh/Dt takes the form

w= (u+ U(t)) ·∇Hh(x+ X(t), y+ Y(t)) at z= h(x+ X(t), y+ Y(t)), (2.8)

where ∇H is the horizontal gradient and where we used (Ẋ, Ẏ, 0) = U . Obviously,
this complicated nonlinear boundary condition simplifies greatly once we use the
asymptotic assumptions of small excursion and small topography amplitude in
(2.2). In particular, the small-excursion limit means that we will ignore the tidal
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displacements (X,Y, 0) completely in (2.8), which hence reduces to the simpler
expression

w= (u+ U(t)) ·∇Hh(x, y) at z= h(x, y). (2.9)

Notably, the barotropic tide U(t) enters solely in this lower boundary condition.

3. Linear wave field
As mentioned in § 2.2, we now assume that the flow fields can be expanded

asymptotically in powers of a:

ϕ = ϕ(0) + ϕ(1) + ϕ(2) + O(a3), (3.1)

where ϕ stands for any flow variable and where ϕ(n) = O(an). In this expansion scheme
the barotropic tide U has only an O(1) part and the topography h has only an O(a)
part, so we omit the superscripts for these fields; the expansions of (u, p, b) all start
at O(a). In the next two sections, we look for solutions of our governing equations at
each of these orders. Let us solve our problem at O(a) to retrieve the stationary (i.e.
steadily oscillating) linear wave field.

3.1. Linear wave equation
At O(a), (2.6)–(2.9) become

u(1),t + f ẑ× u(1) = b(1)ẑ−∇p(1), (3.2a)

b(1),t + N2w(1) =−αb(1), (3.2b)

∇ ·u(1) = 0, (3.2c)
w(1)
∣∣

z=H
= 0, w(1)

∣∣
z=0
= w0 = U(t) ·∇Hh. (3.2d)

The wave field is monochromatic in time, which allows us to write

ϕ(1)(r, z, t)= ϕ̃(r, z)e−iωt + ϕ̃∗(r, z)eiωt

2
= Re

(
ϕ̃(r, z)e−iωt

)
, (3.3)

where ( )∗ denotes the complex conjugate, r = (x, y) is the horizontal position vector,
and Re means taking the real part. Equations (3.2b) and (3.3) then yield

b̃= N2

iω − α w̃. (3.4)

Taking into account the last equation as well as (3.2c) and [(∇×(3.2a)) · ẑ], equation
[(∇ × (∇×(3.2a))) · ẑ] gives the equation for the complex-valued vertical velocity:

∇2
Hw̃− (µβ)2 w̃,zz = 0, (3.5)

where ∇2
H is the horizontal Laplacian and

β2 = (N
2 − ω2)(1+ iα/ω)
N2 − ω2 − iαω

. (3.6)

If α = 0, then β = 1 and one recognizes the usual inviscid hyperbolic internal-wave
equation, whose characteristics have a slope µ aligned with the usual group-velocity
direction of propagation of the fixed-frequency waves (however, we do not make the
assumption of a slowly varying wavetrain here). Equation (3.5) is to be solved using
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a radiation condition in the horizontal directions as well as the following vertical
boundary conditions:

w̃|z=H = 0; w̃|z=0 = w̃0 = Ũ ·∇Hh, (3.7)

where Ũ = U0(1, iγ ). We note in passing that applying the hydrostatic approximation,
which is common in studies of the present type, only results in simplifying the
expressions of µ2 and β2 into (ω2 − f 2)/N2 and 1 + iα/ω, respectively, and does not
simplify our problem any further. Hence we will not make this approximation.

3.2. Derivation of the linear vertical velocity
We are looking for a solution of (3.5) with the proper radiation and boundary
conditions, which we obtain using a Green’s function approach. The Green’s function
we are looking for satisfies (3.5) in the interior of the domain and vanishes at the top
and bottom of the domain, except for a point source located at (r, z) = (r0, 0). Hence,
we are looking for a function G(r, z; r0) such that

∇2
HG− (µβ)2 G,zz = 0, (3.8a)

G|z=H = 0, G|z=0 = δ(r− r0), (3.8b)

where δ is Dirac’s delta function. The expression for the vertical velocity in the whole
domain is then found by integrating G(r, z; r0) against w̃0(r0) in the horizontal plane.

Solving internal-wave radiation problems using the Green’s function approach of
Robinson (1969) has been common practice in the literature (e.g. Llewellyn Smith &
Young 2003; Pétrélis, Llewellyn Smith & Young 2006; Echeverri & Peacock 2010).
However, typically this approach deals with a point source located in the interior of
the domain, allowing the Green’s function to be written as an infinite sum of sine
functions in z that are all zero at the top and bottom of the domain. Obviously, any
w̃ thus constructed would not satisfy the lower boundary condition in (3.7) pointwise.
To our knowledge, only Llewellyn Smith & Young (2002) solve a radiation problem
combining the WTA and a Green’s function approach, with the minor difference that
they use the hydrostatic approximation. However, they still project their solutions on
an infinite set of sine functions that are zero at the bottom boundary, which results
in the same problem: the vertical velocities arise from non-zero values at the bottom
boundary, but they are zero there by construction of the Green’s function. In other
words, above non-zero topography the solution based on the infinite sine series in the
vertical converges to the true solution only weakly, i.e. in a quadratic integral norm
sense. This is perfectly fine for the application that these authors pursued, namely
the computation of the outward wave energy flux from an isolated topography feature,
because that flux can be computed from the solution evaluated far away from the
topography, where the series expansion captures the correct boundary conditions of
vanishing vertical velocity.

In contrast, in our case we wish to model the wave field everywhere, including
near the topography where the non-uniform convergence of the sine series leads to
undesirable Gibbs fringes and very noisy derivatives. We therefore seek a Green’s
function that is able to pick up the bottom boundary in (3.8b) exactly. One way to do
this is to postulate

G(r, z; r0)= G (r, z; r0)+
(

1− z

H

)
δ(r− r0), (3.9)

where the second term on the right-hand side picks up the lower boundary condition
and the remainder G is now zero at the top and bottom of the domain. Next,
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we define

G (r, z; r0)=
∞∑

m=1

Gm(r; r0) sin(kmz); Gm(r; r0)= 2
H

∫ H

0
G (r, z; r0) sin(kmz) dz, (3.10)

where km = mπ/H (m = 1, 2, . . .), multiply (3.8a) by (2/H) sin(kmz) and integrate it
vertically over [0,H], which requires integrating the G,zz sin(kmz) term by parts twice.
The result is the following equation:

∇2
HGm(r; r0)+ (µβkm)

2 Gm(r; r0)=− 2
πm
∇2

Hδ(r− r0). (3.11)

This is an inhomogeneous two-dimensional Helmholtz equation with wavenumber
µβkm whose Green’s function gm(r; r1) is the solution of

∇2
Hgm(r; r1)+ (µβkm)

2 gm(r; r1)= δ(r− r1). (3.12)

More specifically, the Green’s function which satisfies our radiation condition is (e.g.
Barton 1989, § 13)

gm(r; r1)= 1
4i

H(1)
0 (µβkm|r− r1|), (3.13)

where H(1)
0 is the order-zero Hankel function of the first kind and the choice of the

root of β2 is dictated by the fact that waves decay due to dissipation away from the
source, i.e. that Im(β) > 0, where Im denotes the imaginary part. Gm is then the result
of the integration of gm against the right-hand side of (3.11):

Gm(r; r0)=− 2
πm

gm(r; r1)∇2
Hδ(r1 − r0) d2r1, (3.14)

where ∇2
H acts on r1. By definition of the derivative of the Dirac delta function:

Gm(r; r0)=− 2
πm

∫∫
R2
δ(r1 − r0)∇2

Hgm(r; r1) d2r1

=− 2
πm
∇2

Hgm(r; r0), (3.15)

where R represents the set of all real numbers.
Note that ∇2

H is supposed to act on r0. However, because gm is symmetric, we
actually invert the roles of r and r0 and consider that ∇2

H acts on r. Using (3.12) and
(3.13), the final expression for G is

G(r, z; r0)= (µβ)
2

2iH

∞∑
m=1

kmH(1)
0 (µβkm|r− r0|) sin(kmz)

+
(

1− z

H
− 2
π

∞∑
m=1

sin(kmz)

m

)
δ(r− r0). (3.16)

The vertical velocity is therefore given by

w̃(r, z)= (µβ)
2

2iH

∞∑
m=1

Cm(r) sin(kmz)+
(

1− z

H
− 2
π

∞∑
m=1

sin(kmz)

m

)
w̃0(r), (3.17)
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where

Cm(r)=
∫∫

R2
kmH(1)

0 (µβkm|r− r0|)w̃0(r0) d2r0. (3.18)

The first half of (3.17) is analogous to the Green’s function solution in Llewellyn
Smith & Young (2002) and the second half augments that solution over non-zero
topography.

For completeness, we also give the expression for w̃ in the two-dimensional case
where ∂/∂y= 0, for which a detailed derivation is provided in appendix A:

w̃(x, z)= µβ
iH

∞∑
m=1

Cm(x) sin(kmz)+
(

1− z

H
− 2
π

∞∑
m=1

sin(kmz)

m

)
w̃0(x), (3.19)

where

Cm(x)=
∫ ∞
−∞

exp(iµβkm|x− x0|) w̃0(x0) dx0. (3.20)

4. Mean-flow response
4.1. Strong interactions and potential vorticity

We now proceed to compute the leading-order mean-flow response to the waves,
which arises at O(a2) in wave amplitude. Here the Eulerian averaging operation that
defines the mean flow is a standard multiscale time average, i.e. an average over a
time scale that is long compared to the oscillation period of the waves but short
compared to the evolution time scale for the mean flow. Equivalently, this amounts
to an average over the phase of the monochromatic linear waves. This is a standard
problem in wave–mean interaction theory (e.g. Bühler 2009, § 8), albeit not a trivial
one because of the three-dimensional nature of the mean flow. A key point is to
focus on strong wave–mean interactions, i.e. interactions that can force a mean-flow
response growing secularly as O(a2t) in time. Arguably, weak interactions, which only
lead to O(a2) adjustments of the mean flow that are uniformly bounded in time, can
be ignored in the presence of strong interactions, and this simplifies the analysis
significantly.

Specifically, in a regular perturbation expansion of the nonlinear fluids equations in
wave amplitude, the same linear operator appears at each order in the expansion but
with forcing terms on the right-hand side that stem from products of lower-order terms.
Clearly, a search for strong interactions then becomes a search for resonantly forced
modes of this linear operator. Because the phase-averaged wave field is steady, only
the forcing of the zero-frequency mode of the linear Boussinesq operator is captured,
which is the usual balanced or vortical mode that can be described by the distribution
of potential vorticity throughout the domain. By averaging over a fast time scale, we
do not capture any forcing, even resonant, of the mean-flow response related to the
gravity-wave modes of the linear operator, whose frequencies are all bounded from
below by the Coriolis frequency.

Thus, for a stationary wave field, we expect the mean-flow response to be dominated
by the balanced mode, an expectation we now try to confirm by investigating how the
wave modes described at O(a) generate the forcing at O(a2) and how the latter can
project on the PV-controlled balanced mode.
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4.2. Generalized Lagrangian-mean equations
Interactions between waves and mean flows can been studied from both Eulerian and
Lagrangian points of view. Although the former usually involves a simpler formalism,
Eulerian-mean equations lack an equivalent of the Kelvin circulation theorem (KCT)
(e.g. Bühler 2010), which makes it very hard to work with an Eulerian-mean potential
vorticity (PV). We, rather, choose to use the generalized Lagrangian-mean (GLM)
theory, first developed by Andrews & McIntyre (1978). This theory combines Eulerian
features, for instance evaluating all quantities on an Eulerian set of coordinates, and
Lagrangian features, such as following the wave-induced displacements of the material
particles. This theory makes it relatively easy to define an averaged form of the
KCT (e.g. Bühler 2009, §§ 10.2.7 and 10.4.1) and hence a Lagrangian-mean form for
the PV.

We note in passing that in the end, the computed O(a2) fields are Lagrangian
and not Eulerian. However, the two are linked by Stokes corrections, which are
wave properties which at leading order can be computed from the O(a) solution.
As explained by Bühler (2009, § 10.1.1), would be quite easy in our perturbation
expansion to subtract the leading-order Stokes correction from the Lagrangian solution
to get the mean Eulerian solution, were we looking for it.

Writing down the GLM equations requires first to define some notation. This is the
sole purpose of (4.1)–(4.4), which by are no means intended to explain the underlying
theory, fully described in other publications (e.g. Andrews & McIntyre 1978; Bühler
2009, § 10). First, we define the linear particle displacement ξ as

ξ ,t = u(1), (4.1)

x + ξ(x, t) thus being the linear position at time t of a material particle whose mean
position is x. Next, deriving the GLM equations partially consists of evaluating all
fields at the displaced positions x+ ξ :

ϕ(x, t)→ ϕξ (x, t)= ϕ(x+ ξ(x, t), t) (4.2)

and decomposing the quantities ϕξ into Lagrangian-mean and Lagrangian-disturbance
fields:

ϕξ = ϕL + ϕ`, (4.3)

where

ϕL = ϕξ and therefore ϕ` = 0, (4.4)

with ( )
L

called the GLM operator and ( ) denoting the Eulerian averaging operator.
As said above, this average is performed over a fast time scale (say a few tidal cycles)
in order to eliminate all O(a) wave motions while retaining the slow evolution of
the Lagrangian-mean flow. For the homogeneous background flow considered here we
have that u` = u(1) at O(a) and Lagrangian disturbance and mean quantities scale as a
and a2, respectively, like their Eulerian counterparts.

The O(a2) GLM momentum equation, adapted from Bühler & McIntyre (1998,
equation (9.4)), can be cast in the form(

uL − p
)
,t
+ f ẑ× uL − b

L
ẑ= b`∇ζ +∇(. . .), (4.5)

where p = −∑3
j=1

[
u`j + (f /2) (ẑ× ξ)j

]
∇ξj is the Lagrangian pseudomomentum per

unit mass, ζ = ξ · ẑ and subscripts not preceded by commas denote Cartesian
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components. The vector field p is a wave property whose time derivative vanishes
owing to the assumed steadiness of the wave field and the dots in (4.5) refer to terms
that will not play any role in the O(a2) GLM vorticity equation, which for p,t = 0 is

∇ × uL
,t − fuL

,z −∇ × (bL
ẑ)=∇ × (b`∇ζ )= C. (4.6)

This omits a term (∇ ·uL)f ẑ on the left-hand side, which is justified because according
to Andrews & McIntyre (1978, equation (9.4)), ∇ · uL = (1/2)∂[∑j,k(ξjξk),jk]/∂t holds
at O(a2) for incompressible flows and therefore

∇ ·uL = 0 (4.7)

holds for stationary waves, which leads to (4.6). To complete our set of equations,
the Lagrangian-mean and Lagrangian-disturbance equations for the buoyancy, adapted
from Bühler & McIntyre (1998, equations (9.6) and (9.7)), are

b
L
,t + N2wL + αLb

L = 0, (4.8a)

b`,t + N2w` + αb` = 0. (4.8b)

Note that in (4.8a), we introduce a new parameter αL instead of simply setting αL = α.
The motivation for this is that we view the radiative damping in the linear equations
as a crude model for turbulent dissipation, which is more likely to act preferentially
on the sheared internal waves rather than on the smooth balanced flow. So, in order to
keep room for future discussions, we leave the value of αL a free parameter ranging
between 0 and α.

Together, (4.6), (4.7) and (4.8a) form a complete set of Lagrangian-mean equations,
which has the obvious advantage over its Eulerian-mean counterpart that there is
only a single disturbance-induced forcing term on the right-hand side, namely the
disturbance-buoyancy curl term C in (4.6). Also, the boundary conditions for the
leading-order Lagrangian-mean flow are simply wL = 0 at both z = H and z = 0,
because the GLM theory preserves the impermeability of the mean boundary (Andrews
& McIntyre 1978, § 4.2). In contrast, the Eulerian boundary conditions for w are
typically inhomogeneous at moving boundaries, owing to Stokes corrections, or lack
thereof. This is another advantage of the Lagrangian formalism.

Now, as noticed by Bühler & McIntyre (1998), in the absence of dissipation b`∇ζ
can be written in the form of a perfect gradient and its curl would then be zero
in (4.6). This makes explicit that a stationary non-dissipating field of internal waves
does not force the mean flow at leading order, which is an extension to three-
dimensional mean flows of the classical results for zonally symmetric mean flows
known under the general heading of ‘non-acceleration results’ (e.g. Andrews, Holton &
Leovy 1987).

In our case, the presence of the dissipative term in (3.2b) provides the key forcing
term for the GLM vorticity equation, which we now derive. Because w` = w(1) and
because (4.8b) and (3.2b) are identical, (3.4) holds for b̃` as well. Recalling (3.3), we
find after an elementary computation that for monochromatic waves

b`∇ζ =∇(. . .)+ F, (4.9)

where dots refer to irrelevant potential terms and where

F= αN2

2(ω2 + α2)ω
Im(w̃∗∇w̃). (4.10)
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This makes obvious that only F, hereafter referred to as the effective mean force,
will have an impact on the vorticity dynamics, while (4.10) once more shows that
dissipation is essential in order to obtain a non-zero F. Physically, the origin of F
lies in vertical buoyancy forces b` that act on vertical displacements ζ in Kelvin’s
circulation theorem when applied to undulating material contours. This is the same
physics as in the more familiar situation of zonal averaging. We note in passing
that −F is also the dissipative term that would appear on the right-hand side of the
evolution equation for the pseudomomentum vector p; this is in accordance with the
general relations between Q

L
, the Lagrangian-mean PV, and p in GLM theory (e.g.

McIntyre & Norton 1990; Bühler 2000, 2009).
The curl of F turns out to be

C =∇ × F=∇ × (b`∇ζ )= αN2

2(ω2 + α2)ω

∇w̃∗ ×∇w̃

i
, (4.11)

where it is noteworthy that ∇w̃∗ ×∇w̃ is either zero or purely imaginary.
Finally, (4.11) can be used to obtain an order-of-magnitude scaling for C. In

particular, the vertical component of C involves only horizontal derivatives of w̃,
which scale with 1/L, and w̃ itself scales with U0h0/L. Combining this with the small
parameters in (2.2) and the definition of the wave slope µ yields

Cz = C · ẑ∼ αN2

2(ω2 + α2)ω

U2
0h2

0

L4
≈ α
ω

ω2 − f 2

2
a2ε2. (4.12)

The second form also uses α � ω and N � ω for simplicity. This shows that Cz is
very sensitive to the size of U0h0/L2.

4.3. Potential vorticity evolution
So far we have considered the complete mean-flow response, without distinguishing
between strong and weak interactions. As said above, strong, resonant forcing of the
mean flow due to a stationary wave field can be achieved only if the forcing C
projects onto the PV evolution of the mean flow. In the present situation the O(a2)

Lagrangian-mean PV relative to the unperturbed background flow can be written as
(Bühler 2009)

Q
L = [∇ × (uL − p

)]
· ẑ+ f b

L
,z

N2
+ 1

2
f
∑

j,k

(ξjξk),jk. (4.13)

The last term is due to a Lagrangian-mean divergence or density dilation effect;
notably this term as well as the pseudomomentum term are both constant in time for a
stationary wave field, so their time derivatives vanish.

In order to know how the PV evolves, we use the vertical component of (4.6) as
well as (4.8a) and get

Q
L
,t +

αLf

N2
b

L
,z = C · ẑ= Cz = ẑ · (∇ × F). (4.14)

Clearly, the vertical curl of the horizontal components of F is the only part of the
effective mean force that can produce a strong interaction. (We note in passing that
we do not expect to see remote recoil effects (Bühler & McIntyre 2003) of the
waves on the vortical motion, as the amplitude of the aforementioned flow would
need to be two orders of magnitude higher in amplitude in order to appear at O(a2).)
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αL = 0 αL 6= 0

Two-dimensional case (∂/∂x= 0 or ∂/∂y= 0) Yes Yes
Three-dimensional case No Yes∗

TABLE 1. Is a steady state possible for the Lagrangian-mean flow? ‘Yes∗’ means that
the interior equations make a steady state possible but not generally compatible with the
boundary conditions at the top and bottom of the domain. ‘No’ implies a secular growth of
the Lagrangian-mean PV.

The damping term on the left-hand side might compensate the forcing term Cz, which
would indicate a possible steady mean-flow response in forced–dissipative balance. Of
course, whether or not this might occur also depends on our modelling choice for the
parameter αL. We will now investigate a few different scenarios in which the possible
mean-flow evolutions can be studied in detail.

5. Bounded and unbounded mean-flow responses
In order to evaluate whether the mean flow can have a dynamical importance

beyond O(a2), we now investigate when a bounded, steady mean-flow is possible and
when not. We use the complete GLM equations, but also use the insight provided by
the GLM PV equation. Several cases can be distinguished and the casual reader might
want to skip to table 1, where the results are summarized.

5.1. Two-dimensional case
Let us first consider the two-dimensional case where ∂/∂y = 0. In this case, ∇w̃ and
∇w̃∗ are in the (x, z) vertical plane. C is perpendicular to both vectors (cf. equation
(4.11)), so we have C = Cyŷ, implying that the PV equation (4.14) is unforced. Hence
we expect that a steady state is possible.

Cancelling t- and y-derivatives in ((4.6) · ẑ) yields wL
,z = 0 and hence wL = 0 from the

boundary conditions. Similarly, the x-component of (4.6) together with (4.7) imply that
uL = 0. Two cases can now be distinguished, depending on the value of αL. If αL = 0
then equation ((4.6) · ŷ) gives

− fvL
,z + b

L
,x = Cy. (5.1)

To obtain a unique steady state we need to exploit the fact that (4.14) tells us that
Q

L
keeps its initial value, which is zero provided we consider that the waves have

been set up from a state of rest. In principle, by combining Q
L = 0 and (5.1), it is

possible to compute the detailed steady state provided one has expressions for the
pseudomomentum and the other wave properties that appear in (4.6).

On the other hand, if αL 6= 0 then the situation is simpler because now (4.8a)
together with wL = 0 implies b

L = 0 and vL then follows from

vL
,z =−Cy/f . (5.2)

The only non-vanishing steady response of the wave forcing is therefore contained
in a steady flow parallel to the ridge, which is coupled to the along-ridge forcing
by rotation. Contrary to the case where αL = 0, the Lagrangian-mean isopycnals are
horizontal.
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Either way, it is worth noticing that the two-dimensional vertical slice model, widely
used in practice owing to its reduced computational cost, does not allow any resonance
between the effective mean force and the balanced mode, which results only in a weak,
non-resonant response equilibrating at O(a2). However, one should note the potential
caveat that the steady mean response that we computed here might in fact be unstable
to oscillatory vacillations in a manner familiar in atmospheric science from the Plumb
model of the quasi-biennial oscillation (e.g. Andrews et al. 1987).

5.2. Three-dimensional case
The general three-dimensional steady Lagrangian-mean vorticity and buoyancy
equations are

−f uL
,z − b

L
,y = Cx, (5.3a)

−fvL
,z + b

L
,x = Cy, (5.3b)

−f wL
,z = Cz, (5.3c)

N2wL =−αLb
L
. (5.3d)

Note that because ∇ · C = 0 (cf. (4.11)), the Lagrangian-mean incompressibility
condition is implicit in the above set of equations.

The interpretation of the above system of equations is the following. According to
(5.3c), the mean-flow forcing induces a vertical Lagrangian-mean velocity. From here,
two cases have to be distinguished: αL vanishing or not vanishing.

If αL 6= 0 then the interior equations make a steady state possible, although a
caveat regarding the bottom boundary condition arises. Indeed, (5.3d) shows that
isopycnals bend. Equations (5.3a)–(5.3b) then show that the horizontal Lagrangian-
mean velocities are forced by the horizontal components of C but also by Cz through
b

L
and wL. As mentioned in § 4.2, the GLM theory preserves the impermeability of the

boundaries and therefore, wL|z=H = 0. Integrating (5.3c) over the fluid column therefore
yields

wL
∣∣

z=0
= 1

f

∫ H

0
Cz(r, z) dz, (5.4)

which has to be compatible with the bottom boundary condition:

wL
∣∣

z=0
= 0. (5.5)

Proving analytically that the steady state, deduced from the interior equations is
never compatible with the boundary conditions, is daunting and not attempted here.
However, we will see in § 6.3 an example of a configuration where (5.4) and (5.5)
obviously contradict each other, a fact one has to be aware of when investigating
different situations. The conclusions one can draw are multiple and possibly mutually
exclusive: one could deduce that a steady state is unlikely to exist but also that a top
and/or a bottom boundary layer(s) unaccounted for in our model can develop.

If αL = 0, on the other hand, an inconsistency between (5.3a) and (5.3d) arises and
the assumption that a steady state is possible has to be abandoned. In this case, (4.14)
becomes

Q
L
,t = Cz. (5.6)
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The PV then grows secularly until the asymptotic ordering, on which our model is
based, is violated. A conclusion we can draw from comparing all two- and three-
dimensional cases is that the possibility of the mean flow reaching a steady state
or not depends greatly on the configuration; our findings are summarized in table 1.
Clearly, strong, resonant responses of the mean flow can only be found in three-
dimensional configurations.

5.3. Time scale for significant PV growth

We should say a few words about the magnitude of Cz, so we must first associate
its magnitude with a meaningful metric. One natural approach to this in the case of
unbounded growth of Q

L
is to compute the time scale over which Q

L
would grow

to a magnitude such that the neglected horizontal advection term
(
uL
·∇H

)
Q

L
in

(5.6) becomes important. A simple estimate for this follows from the growth implied
by (5.6), namely that Q

L = Czt plus some O(a2) initial condition. The horizontal
Lagrangian-mean velocity signal associated with this growing PV disturbance would
scale as uL ∼ Q

L
L with the common horizontal length scale L. Hence the nonlinear

term becomes comparable to the forcing term at a time t such that(
uL
·∇H

)
Q

L ∼ Cz ⇒
(

Q
L
)2 ∼ Cz ⇒ t2Cz ∼ 1. (5.7)

Presumably, then, the linear growth of Q
L

saturates over a time scale

T = 1√
Cz

and Q
L = CzT =

√
Cz (5.8)

is the magnitude of the PV disturbance that has been reached at this saturation time.

6. Numerical calculations in three dimensions
We now focus our attention on the horizontal effective force, hereafter referred to

as FH , which is the only one acting on the PV, and the forcing term Cz. We compute
these quantities numerically in a few cases.

6.1. Numerical procedure

Because we are considering a finite-extent topography, Fourier transforms are not an
efficient way of computing the convolution in (3.18). They must, rather, be calculated
at each location, point by point, which is very costly from a numerical point of view.

We choose an axisymmetric Gaussian seamount, for simplicity reasons but also
because it allows us to design a faster way of computing Cz. First, it makes it more
useful to switch to a polar coordinate system (r, θ, z) defined by (x, y)= r(cos θ, sin θ)
centred on the seamount, whose bathymetry is given by

h(r)= h0 exp
(
− r2

2L2

)
, (6.1)

which implies

w̃0(r, θ)=−U0h0

L2
r exp

(
− r2

2L2

)
(cos θ + iγ sin θ) . (6.2)



266 N. Grisouard and O. Bühler

In the new coordinate system and for a Gaussian topography, w̃ becomes (cf.
appendix B):

w=W(r, z)(cos θ + iγ sin θ), (6.3)

with

W(r, z)

=−U0h0

L2
r exp

(
− r2

2L2

){
1− z

H
− 2
π

∞∑
m=1

sin(kmz)

m
+ π (µβ)

2

iHr

∫ ∞
0

r0 exp
(
− r2

0

2L2

)

×
[
rI0

(rr0

L2

)
− r0I1

(rr0

L2

)][ ∞∑
m=1

kmH(1)
0 (µβkmr0) sin(kmz)

]
dr0

}
, (6.4)

where In is the order-n modified Bessel function of the first kind. Hence, instead
of computing the Cm functions, which involve two-dimensional convolutions, the
computation of w̃ can be reduced to the computation of W, which involves only
one integral. Including the dependence on θ is then straightforward, as shown by (6.3).

All quantities displayed here are calculated on a grid of finite extent and up to a
vertical mode number M. In all cases, we choose M = 32 and check that the highest
vertical mode computed has a negligible amplitude compared to the few dominant
modes.

Sufficient horizontal resolution is required in order for the integration, present in the
expression of W(r, z) and computed with the trapezoidal method for each discrete r, to
give physical values. Empirical trials indicate that resolving the horizontal wavelength
of the highest mode by 16 points gives satisfactory results.

The radial extent R of the domain is chosen to be large enough for the numerical
integrations to be good approximations of integrals whose endpoints go to infinity. We
choose R = 4H/µ ≈ 160 km ≈ 16L. Finally, we choose a fairly weak dissipation rate
(discussed in § 6.4)

α

ω
= 0.1 (6.5)

and note that the other numerical values are defined in § 2.1. An illustration of Re(w̃)
for γ = 0 is presented in figure 2.

Note that unlike in the model of Pétrélis et al. (2006), the numerical solutions we
will compute next do not exhibit small-scale noise for the resolutions we use. This is
due to the second part of (3.17).

6.2. Rectilinear tide
We first investigate the case γ = 0, for which (4.10), (4.11) and (6.3) yield

FH =
(

Fr

Fθ

)
= αN2

2(ω2 + α2)ω

(
Im(W∗W,r)cos2θ

0

)
, (6.6)

Cz = CI
z(r, θ, z)= αN2

2(ω2 + α2)ω

Im(W∗W,r)
r

sin(2θ). (6.7)

The horizontal effective force FH has no azimuthal component and its radial
component has two maxima, aligned with the direction of the tide. This yields a
quadrupolar pattern for CI

z, as seen on figure 3. The quadrupolar nature of the PV
forcing pattern is consistent with expectations based on simple wave-packet thinking.
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FIGURE 2. (Colour online) Re(w̃)/(aµU0) for γ = 0. Axes are stretched so that waves seem
to propagate vertically at angle 45◦. (a,b) horizontal and vertical slices at z = H/2 and θ = 0,
respectively (the colour scale applies to both). (c) Three-dimensional isocontours marking the
loci where |w̃|/(aµU0) = 0.1. Blue is for negative values, red for positive, as indicated by
the plus and minus signs. In all three pictures, the double arrow marks the direction of the
barotropic tide. In (a,c), the inner and outer black circles indicate the topographic isocontours
h = h0/2 and h = h0/20, respectively. In (b), the solid line corresponds to the topography
height multiplied by 4 for purposes of visualization.

For example, as described by e.g. Bretherton (1969) and Bühler (2010), the dissipation
of a slowly varying wave packet crossing an isopycnal surface generates a dipolar
PV forcing pattern on that isopycnal. In our case, the forcing is now an oscillating
tide, leading to waves that are radiated mainly in two opposite directions and the PV
response is qualitatively in the form of two dipoles whose PV distributions nearly
cancel, i.e. a quadrupole. Another way of seeing the same phenomenon is to note that
a quadrupolar PV forcing pattern is a horizontal derivative of a dipolar pattern in FH ,
and the spatial integral of such a dipolar FH is zero. This is consistent with a zero
mean drag force on the topography over a full tidal oscillation cycle. This is unlike the
mountain lee-wave scenario, where there is a non-zero drag force on the mountain and
a corresponding equal-and-opposite net effective mean force on the fluid, which is felt
where the waves dissipate. So for lee waves one expects a dipolar PV forcing pattern
and for tidal waves one expects a quadrupolar pattern.

In this example the numerical magnitude of CI
z is ∼2 × 10−6 × aU0ω/L ≈

4× 10−17 s−2. Using the estimate (5.8) for the time until horizontal advection becomes
important then yields T ≈ 5 years, which is very long compared to the tidal cycle. If
U0 and h0 were both doubled then by (4.12) the value of Cz would increase by a factor
of 16 whilst that of T would decrease by a factor of 4. Still, it seems that one can
safely assume that many tidal cycles will pass before the wave-induced PV disturbance
can no longer be described by our theory.
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FIGURE 3. (Colour online) CI
zL/(aU0ω), which corresponds to the same computation as for

figure 2. For explanations of the double arrows, the black lines and the plus and minus signs,
see figure 2. (a) A horizontal slice located at altitude z = H/2. Single arrows correspond to
FH , their scale being arbitrary. (b) The inner dark and outer light isocontours show the loci of
|CI

z|L/(aU0ω)= 2.4× 10−6 and 0.4× 10−6, respectively (max[CI
zL/(aU0ω)] ≈ 2.7× 10−6).

6.3. Rotary tide
We now consider γ 6= 0, which consists of adding to the previous tide a transverse
component, in time quadrature with the former. Using again (4.10) and (6.3), we now
have

FH = αN2

2(ω2 + α2)ω

(
Im(W∗W,r)(cos2θ + γ 2sin2θ)

γ |W|2 /r

)
. (6.8)

Important qualitative differences arise compared to the γ = 0 case, as the effective
force is now the sum of three contributions: in Fr, the contribution of the previous,
along-x̂ rectilinear tide proportional to cos2θ and the individual contribution of the
transverse, along-ŷ component proportional to sin2θ ; in Fθ , a cross-term blending
contributions from both tidal components and responsible for a non-zero azimuthal
component of the effective force.

Other consequences of allowing some ellipticity for the rotary barotropic tide are
made apparent in the PV forcing, again with the help of (4.11):

Cz = (1− γ 2)CI
z(r, θ, z)+ γCX

z (r, z), with CX
z (r, z)= αN2

(ω2 + α2)ω

Re(W∗W,r)
r

. (6.9)

The contributions of each one of the along-x̂ and along-ŷ tidal components, shaped
as quadrupoles such as the one displayed in figure 3, are now contained in
(1 − γ 2)CI

z. Besides their magnitudes differing by a factor γ 2, the two patterns of
each individual component are 90o of horizontal rotation from each other around the
central vertical axis and because they are quadrupolar, they are of opposite sign. The
two contributions therefore cancel each other partially for 0 < |γ | < 1 and completely
for |γ | = 1.

On the other hand, the cross-term γCX
z is independent of θ , as is Fθ . As can be

seen on figure 4, Fθ has its maximum on the slope of the seamount, at a certain
distance from its top and approximately (although not exactly) where CX

z vanishes.
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FIGURE 4. Cross-terms forcing the balanced flow in the case where γ 6= 0: (a) Fθ/γ and (b)
CX

x L/(aU0ω). In (b), the grey scale corresponds to absolute values and contours correspond to
algebraic values, with the −5 × 10−6, 0 and 5 × 10−6 values marked explicitly. The dashed
lines in (a) and (b) correspond to the topography height multiplied by 4 for purposes of
visualization.
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FIGURE 5. (Colour online) (a) As figure 3(b) but for γ = 0.1. The two outermost isocontours
correspond to the same values as in figure 3, whereas the innermost isocontour corresponds
to CzL/(aU0ω) = 4 × 10−6 (max[CzL/(aU0ω)] ≈ 5.0 × 10−6). The tidal double arrow of
figure 3 has turned into a counterclockwise tidal ellipse of aspect ratio γ . (b) As (a) but with
viewpoint rotated by 90◦ in the horizontal.

These elements suggest that the cross-terms are forcing a bottom-intensified vortex
associated with (counter-)clockwise displacements around the seamount for γ < 0
(γ > 0). We note in passing that computations in Cartesian domains with elliptic
instead of axisymmetric seamounts (not shown) show that the vortex shape actually
follows the isobath contours.

To sum up, increasing ellipticity in the rotary barotropic tide decreases the
magnitude of the original quadrupolar pattern derived in § 6.2 and increases the forcing
of a bottom-intensified vortex, as illustrated in figures 5 and 6 for γ = 0.1 and 0.7.
The former shows that even a modest value of γ induces a significant qualitative
modification of Cz near the top of the mountain, while the latter shows how a strong
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FIGURE 6. (Colour online) As figure 5 but for γ = 0.7, and the innermost isocontour now
corresponds to CzL/(aU0ω)= 30× 10−6 (max[CzL/(aU0ω)] ≈ 35× 10−6).

but realistic (cf. e.g. St Laurent & Garrett 2002) value of γ dramatically changes the
PV forcing. The most striking consequence of increasing γ on the PV forcing is the
amount that its spatial distribution is modified, becoming more confined to the vicinity
of the topography, among other changes. Also, the magnitude of Cz increases sharply
with γ : taking the values computed in § 6.2 for γ = 0 as a reference, its maximum
value is doubled for γ = 0.1 (cf. figure 5) and multiplied by 14 for γ = 0.7 (cf.
figure 6).

6.4. Influence of the dissipation
The value of α that we have used so far, associated with a decay scale of about
a week, is not wildly unreasonable but does not pretend to be realistic and is not
deduced from the literature. Let us now briefly describe how the forcing of the mean
flow is modified by variations of α.

Figure 7 shows the γ = 0 and 0.7 cases, for which α/ω = 0.5 (instead of the
previous α/ω = 0.1). The peak values of Cz are now higher than their low-dissipation
counterparts of §§ 6.2 and 6.3, while the low values of Cz occupy roughly the same
volume, corresponding to a more rapid spatial decrease of the mean flow forcing.

Increasing the value of α has the effect of limiting the range of propagation of the
O(a) linear waves by increasing their dissipation near the topography. Hence, one can
understand why the forcing of the mean flow increases in terms of peak value but that
this increase is limited to the vicinity of the topography. Far from it, the amplitude of
the wave field is reduced, as is the forcing of the mean flow.

6.5. An example of focusing topography
We have considered so far topography whose isobaths are convex. Bühler & Muller
(2007) showed that topographies with concave isobaths could be interesting cases
as they could induce three-dimensional focusing of internal waves far from the
topography and hence enhanced wave breaking in those regions.

In order to model a concave topography, we create a horseshoe-shaped topography
defined as

h(r, θ)= h0 exp
(
−(r − σ)

2

2L2

)
cos2

(
θ

2

)
, (6.10)
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FIGURE 7. (Colour online) Two cases for which the linear dissipation rate per unit time α
is increased from ω/10 to ω/2. (a) As figure 3, with the exception that max[CzL/(aU0ω)] ≈
5.9× 10−6. (b) As figure 6(a), with the exception that max[CzL/(aU0ω)] ≈ 140× 10−6.

where σ is the distance from the crest of the ridge to the centre of the domain and
the opening along the x < 0 axis is an attempt to model a topographic feature more
plausible than an annulus, resembling a submarine cirque or the mouth of a submarine
canyon. All previous numerical values are kept and we define σ = 3L.

In this configuration, the dependence on θ of w̃(r, θ, z) is less straightforward than
for the axisymmetric topography and instead the computations are done on a square
Cartesian grid. Owing to the increased computational cost of this procedure, the lateral
extent of the semi-domain (equivalent to R in our case) is reduced to 2H/µ and the
number of computed modes is reduced to M = 16. All other parameters, namely α,
the horizontal resolution and all numerical values of the other physical parameters are
kept the same. As a result, the computed Cz is somewhat more noisy, which does not
do any harm to the qualitative conclusions we want to draw. More problematic is the
presence of extra artificial noise along the central fluid column, near the bottom. This
is due to the singularity of the topography gradients in r = 0 and is only significant if
γ 6= 0. We therefore set to zero the values of Cz around the origin of the domain in the
γ = 0.7 case we study next, which again does not change our qualitative conclusions.

Figures 8 and 9 show that whether γ = 0 or γ = 0.7, Cz peaks around the centre of
the topography and high above it, where the wave beams converge, therefore agreeing
with the results of Bühler & Muller (2007). Note that for γ = 0, the quadrupolar
pattern has virtually disappeared because of the asymmetry of the topography. Such
focusing topographies could give insights into cases with seamounts with supercritical
slopes, for which wave beams can focus above the summit in a similar way (e.g.
Carter, Gregg & Merrifield 2006).

6.6. Comparison with other mean flows around topographies
A clear conceptual distinction exists between our model and other observations, such
as boundary-layer effects or tidal rectification. Unfortunately, they are likely to be
confused with each other in a realistic context, as they seem to produce mean flows
with qualitatively similar features.

To our knowledge, the case presented in § 6.2 of a rectilinear tidal forcing with
an axisymmetric mountain has been studied in only a few cases, and only with
supercritical slopes. For example, mean flows at second order in wave amplitude have
been reported in the laboratory experiments and numerical simulations of King, Zhang
& Swinney (2009). However, these mean flows involve significant vertical motion and
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FIGURE 8. (Colour online) (a) CzL/(aU0ω) in the case of a horseshoe topography and γ = 0.
Double arrows, black lines and plus and minus signs have the same definitions as in figure 2.
The inner dark and outer light isocontours show the loci of |Cz|L/(aU0ω) = 8 × 10−6 and
1 × 10−6, respectively (max[CzL/(aU0ω)] ≈ 9.2 × 10−6). (b) The same object viewed from
a location on the (x < 0, y = 0) axis and (c) from a location on the (x = 0, y < 0) axis.
In (b,c), the topography is filled in black and its height is multiplied by 3 for purposes of
visualization.
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FIGURE 9. (Colour online) As figure 8 but for γ = 0.7. The black ellipse has the
same definition as in figure 5. The two outermost isocontours show the same loci as in
figure 8, whereas the innermost contour shows the locus of |Cz|L/(aU0ω) = 18 × 10−6

(max[CzL/(aU0ω)] ≈ 29× 10−6).

strong interactions with a viscous boundary layer, so they seem to be of a different
kind than the balanced mean flows we have studied here.

Regarding the case with a rotary tide, at first sight, the forcing of bottom-intensified
vortices in § 6.3 appears reminiscent of either Taylor–Proudman dynamics or tidal
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rectification (i.e. so-called residual currents). The first class of phenomena can readily
be ruled out as the PV anomaly forcing is not fixed as cyclonic or anticyclonic, but,
rather, depends on the sign of γ . Still, the question remains of whether our model is
a reinterpretation of tidal rectification or whether it is a phenomenon of a different
nature. We believe the latter is the case, and so we explain in the next paragraphs how
‘tidal rectification’ and ‘residual currents’ in the literature describe phenomena that do
not include our model.

Tidal rectification has been studied in the shallow-water case by e.g. Huthnance
(1973) and Loder (1980) and extended to the stratified case by Maas & Zimmerman
(1989a,b). In the shallow-water case, Zimmerman (1981) provides a useful
interpretation in terms of vorticity dynamics of how residual currents are generated:
when flowing above topographies, boundary friction and Coriolis accelerations produce
torques on the fluid columns which, integrated over tidal periods, provide a steady
forcing on, say, the circulation around a seamount. In the uniformly stratified case,
Maas & Zimmerman (1989a,b) identify the residual current as the zero-frequency
harmonic component, arising when ε = O(1) or larger (cf. § 2.2).

Both cases only necessitate studying the interaction of the barotropic tide with
itself to generate mean flows. On the contrary, in our case, the barotropic tide and
the mean-flow generation are different by two orders in asymptotic expansion, linear
internal waves providing the link at the intermediate order. For example, if we were
to transpose the mechanism we are describing in the present study to the configuration
studied by Maas & Zimmerman (1989a,b), we would study nonlinear interactions
between all wave harmonics. Extending the analogy even further, a similar study in
a shallow-water configuration would investigate mean flows generated by dissipative
shallow-water waves generated by the tide–topography system, whereas shallow-water
tidal rectification consists of mean flows generated directly and locally by boundary
friction in the the tide–topography system.

Whether our wave–mean model dominates over tidal rectification is determined by
the excursion parameter ε. Assuming ε � 1 places us in a case Maas & Zimmerman
(1989a) call the ‘deep-sea regime’, for which advection by the barotropic tide and
hence the residual currents become negligible, and for which our model dominates the
forcing of the mean flow. On the other hand, as first noticed by Zimmerman (1978),
problems of tidal rectification involve regimes for which ε = O(1), a regime Maas &
Zimmerman (1989a) call the ‘continental shelf regime’. As long as the topographic
slopes are gentle, our mean-flow forcing will still happen at O(a2), whereas tidal
rectification will be an O(1) effect and will therefore dominate.

In regions where tidal excursion is strong, slopes are steep (ε, a = O(1)) and mean
flows are observed, it could be difficult to determine how much of the aforementioned
mean flow is driven by dissipating internal waves or by tidal rectification, because both
mechanisms could be at work (although, strictly speaking, the former would not be
described by our weakly nonlinear theory). Unfortunately, our model does not provide
any obvious way to solve this puzzle and case-by-case studies would have to be done.
In view of these comments, it might be worthwhile to reassess the interpretations of
some of the observations made in the past in the light of our new model. For example,
Kunze & Toole (1997) describe observations of mean flows around Fieberling Guyot
which could not be related to Taylor–Proudman dynamics, but for which the role of
tidal rectification could not be clearly evaluated. Our model might provide a useful
conceptual framework to reinterpret these data.
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7. Concluding comments
Our main theoretical result is the derivation of the wave-induced effective force F in

(4.10) and of its curl C in (4.11), which we repeat here for convenience:

C =∇ × F=∇ × (b`∇ζ )= αN2

2(ω2 + α2)ω

∇w̃∗ ×∇w̃

i
. (7.1)

The effective force F differs from b`∇ζ by an irrotational gradient term, which does
not affect C. Physically, this irrotational gradient term is balanced by a mean pressure
field and therefore does not lead to accelerations of the mean flow.

For a stationary wave field the force curl C comprises the entire effect of the
dissipating waves on the mean flow and its vertical component Cz comprises the entire
effect on the Lagrangian-mean PV. The final form in (7.1) depends on the specific
wave problem we have investigated, but the form C = ∇ × (b`∇ζ ) holds generally
for stationary wave fields subject to damping in the buoyancy field. As the vertical
displacement ζ can be found from ζ,t = w(1) and as b` can be approximated by b(1), it
seems that (7.1) could be used for diagnosing numerical simulations or observational
data for fairly general stationary wave fields subject to buoyancy damping.

Of course, a more complete formulation would allow for dissipative terms in the
momentum equation as well. As shown in Bühler (2000), such dissipative terms
in the momentum equations add naturally to F provided that these terms are
momentum-conserving in an integral sense (i.e. they derive from the divergence
of a dissipative momentum flux tensor in the usual way). This includes the usual
viscous Navier–Stokes terms but excludes Rayleigh damping, for example. Specifically,
if a momentum-conserving force D were added to the momentum equations then
one would need to add

∑
jξj,iD`

j to the ith component of F (e.g. Bühler 2009,
§§ 11.1–11.1.1), i.e.

Fi = b`ζ,i +
3∑

j=1

ξj,iD`
j + (. . .),i. (7.2)

This is the most general effective-mean-force formula for the Boussinesq system.
Now, one obvious extension of our specific wave problem would be to allow for

finite tidal excursion, which corresponds to allowing the parameter ε to take large
values. As is well known, for the linear dynamics this would produce a polychromatic
wave field containing all harmonics of the tidal frequency, with amplitudes generally
decreasing with the order of the harmonic. However, as far as the effective mean force
is concerned, only quadratic combinations with zero frequency matter, which rules
out any correlations between different harmonics. Hence the final term in (7.1) would
simply be replaced by a sum over all the harmonics. So, it seems that extending our
theory to finite excursion length would not lead to fundamentally new results.

To some extent the same could be said if one lifted the restriction to small
topography amplitude and considered large topography features, simply because (7.1)
is a local statement that does not depend on where and how the waves have been
generated. So, while a three-dimensional numerical wave computation with finite-
amplitude topography would certainly be more complicated owing to the possibility
of critical topography slopes as well as the need to apply the boundary conditions
at z = h instead of z = 0, it would seem that the computation of the effective mean
force and its curl would proceed just as in our very simple example. Still, with such
extensions in place it would be interesting to investigate the mean-flow forcing in
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realistic settings, such as the aforementioned Fieberling seamount discussed in Kunze
& Toole (1997), for example. In such a case, the supercritical topography allows for
beams to propagate upwards and radially inwards. Hence, one might expect to see
mean-flow forcing patterns, reminiscent of the patterns described in § 6.5. As discussed
in § 6.6 however, competition with tidal rectification would make it not trivial to
interpret the results.

It is interesting to speculate on the long-time behaviour of the mean flow under the
PV forcing induced by Cz. After all, the tides are at work relentlessly and there is
no shortage of time for effects to accumulate. It seems reasonable to expect that the
horizontal advection terms that have been neglected in (4.14) will eventually lead to
self-advection of the PV field away from the forcing region; such behaviour is indeed
known to occur in simpler shallow-water models for vortices generated by breaking
waves on beaches (e.g. Bühler & Jacobson 2001; Barreiro & Bühler 2008). As argued
before, in such a scenario the PV will saturate over a time scale proportional to 1/

√
Cz

and at an amplitude scaling with
√

Cz, which from (7.1) and the definition of the
wave slope µ would indicate that the PV amplitude scales as

√
α(ω2 − f 2)/ω times

the root-mean-square value of ζ,z. The latter is the non-dimensional amplitude of the
waves and can therefore be expected to be of order unity for breaking waves. Hence
one can estimate that the saturated PV amplitude should scale as

√
α(ω2 − f 2)/ω.

Finally, it would be very interesting to see via numerical simulation of the fully
nonlinear system whether these saturation estimates for the PV are viable or not.
However, as noted before, such simulations would have to be three-dimensional in
order to capture this kind of secularly growing PV dynamics, which is entirely absent
in two-dimensional models, and a configuration keeping a and ε small would have to
be integrated for years before reaching saturation. At present, this perhaps makes such
simulations prohibitively expensive.
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Appendix A. Linear vertical velocity in two dimensions
We are looking for a solution of (3.5) in two dimensions (∂/∂y= 0), using the same

approach as in § 3.2. We are now solving for G(x, z; x0):

G,xx − (µβ)2 G,zz = 0 for (x, z) 6= (x0, 0), (A 1a)

G|z=H = 0; G|z=0 = δ(x− x0), (A 1b)

and proceed to the same decomposition of G that lead to (3.9):

G(x, z; x0)= G (x, z; x0)+
(

1− z

H

)
δ(x− x0). (A 2)

We then reproduce the series of operations spanning from (3.10) to (3.12) for which
we now have to solve for each Gm an inhomogeneous one-dimensional Helmholtz



276 N. Grisouard and O. Bühler

equation of wavenumber µβkm, whose Green’s function is

gm(x; x1)= exp(iµβkm|x− x1|)
2iµβkm

. (A 3)

Integrating over R instead of R2, we get the the equivalent of (3.15):

Gm(x; x0)=− 2
πm

gm,xx(x; x0)= µβiH
exp(iµβkm|x− x0|)− 2

πm
δ(x− x0), (A 4)

the final expression for Gm having been obtained using the one-dimensional Helmholtz
equation that gm is a Green’s function of. The final expression for G is therefore

G(x, z; x0)= µβiH

∞∑
m=1

exp(iµβkm|x− x0|) sin(kmz)

+
(

1− z

H
− 2
π

∞∑
m=1

sin(kmz)

m

)
δ(x− x0), (A 5)

which yields (3.19) and (3.20).

Appendix B. Linear vertical velocity expressed in polar coordinates
Let us recall the expression for w̃0 in Cartesian coordinates:

w̃0(x, y)=−U0h0

L2
(x+ iγ y) exp

(
−x2 + y2

2L2

)
, (B 1)

and hence, in polar coordinates:

w̃0(r− r0)=−U0h0

L2
[r cos θ − r0 cos θ0 + iγ (r sin θ − r0 sin θ0)]

× exp
(
−r2 + r2

0 − 2rr0 cos(θ − θ0)

2L2

)
. (B 2)

Equation (3.18) consists of a convolution. After inverting r0 and |r − r0| in it, we
find

Cm(r, θ)=−U0h0km

L2
exp

(
− r2

2L2

)∫ ∞
0

r0H(1)
0 (µβkmr0)

× exp
(
− r2

0

2L2

)
ψ(r, r0, θ) dr0, (B 3)

where

ψ(r, r0, θ)=
∫ 2π

0
[r cos θ − r0 cos θ0 + iγ (r sin θ − r0 sin θ0)]

× exp
(

rr0 cos(θ − θ0)

L2

)
dθ0. (B 4)

Performing the variable change Θ = θ − θ0, dΘ = −dθ0 and expanding the
trigonometric functions yields

ψ(r, r0, θ)= 2π(cos θ + iγ sin θ)
[
rI0

(rr0

L2

)
− r0I1

(rr0

L2

)]
. (B 5)



Forcing of oceanic mean flows by dissipating internal tides 277

In the equation above, In is the order-n modified Bessel function of the first kind,
which for (n, x) ∈ (Z,C) can be defined as (cf. Olver et al. 2010, § 10.32)

In(x)= 1
π

∫ π
0

cos(nΘ)ex cosΘ dΘ. (B 6)

Equation (B 3) hence becomes

Cm = 2πkm
w0(r, θ)

r

∫ ∞
0

r0H(1)
0 (µβkmr0)

× exp
(
− r2

0

2L2

)[
rI0

(rr0

L2

)
− r0I1

(rr0

L2

)]
dr0, (B 7)

which yields (6.3).
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