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Laboratoire des Écoulements Géophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France

(Received 9 January 2008 and in revised form 23 June 2008)

Internal (gravity) wave attractors may form in closed containers with boundaries non-
parallel and non-normal to the gravity vector. Such attractors have been studied from
a theoretical point of view, in laboratory experiments and using linear numerical
computations. In the present paper two-dimensional numerical simulations of an
internal wave attractor are reported, based upon the nonlinear and non-hydrostatic
MIT-gcm numerical code. We first reproduce the laboratory experiment of a wave
attractor performed by Hazewinkel et al. (J. Fluid Mech. Vol. 598, 2008 p. 373) and
obtain very good agreement with the experimental data. We next propose simple
ideas to model the thickness of the attractor. The model predicts that the thickness
should scale as the 1/3 power of the non-dimensional parameter measuring the ratio
of viscous to buoyancy effects. When the attractor is strongly focusing, the thickness
should also scale as the 1/3 power of the spatial coordinate along the attractor.
Analysis of the numerical data for two different attractors yields values of the exponent
close to 1/3, within 30 %. Finally, we study nonlinear effects induced by the attractor.

1. Introduction
Stably stratified fluids are encountered in geophysics and astrophysics, examples

being the oceanic thermocline, the stratosphere and the radiative zone of the Sun.
From a mechanical point of view, any non-horizontal motion in these fluids yields a
restoring force, namely the buoyancy force, which generates internal gravity waves.
(The Coriolis force due to the rotation of the system – such as a star – may also
act as a restoring force.) These waves are dispersive with a very specific dispersion
relation: their frequency depends upon the angle θ of the wave vector with respect to
the gravity vector. In an unlimited medium with a constant stable gradient of density,
the dispersion relation is indeed ω = N cos θ , where ω is the frequency of the waves
and N is the buoyancy frequency (whose square is proportional to the stable gradient
of density). As a consequence, phase and energy propagate perpendicularly to each
other (e.g. Lighthill 1978). As first noted by Phillips (1967), the peculiar form of the
dispersion relation leads to a peculiar wave reflection at a wall inclined with respect
to the gravity vector: because ω is preserved upon reflection, the angle θ is preserved
as well, which leads to focusing or defocusing of the waves after reflection.

In closed domains, multiple reflections with more focusing than defocusing at the
boundaries can lead to the formation of a wave attractor, namely a part of the domain
where almost all the wave-induced energy is concentrated, as shown by Maas & Lam
(1995). From a mathematical point of view, the existence of the attractor stems
from the fact that the inviscid linear equations of motions are spatially hyperbolic
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(when a harmonic time-dependence is imposed) while boundary conditions must be
satisfied on the walls of the closed domain. The problem is therefore ill-posed in
the absence of viscosity. Singular solutions, distinct from the usual (regular) normal
modes, may arise which eventually converge toward an attractor as time elapses. The
introduction of viscosity regularizes the equation, which becomes elliptic (Rieutord,
Georgeot & Valdettaro 2001). But the attractor appears again in the viscous solution
when viscosity effects are low enough with respect to restoring effects. This was shown
by Rieutord & Valdettaro (1997) in the astrophysical context for a rotating shell. As
analysed by Rieutord & Noui (1999) and Ogilvie (2005), these results are valid
whether the restoring force is the buoyancy force or the Coriolis force in a rotating
system. These works ensure that the structure and dynamics of a wave attractor can
be studied numerically by solving directly the viscous equations of motions, provided
the viscosity is low enough. From a practical point of view, this implies that the grid
size should be much smaller than the thickness of the attractor, namely, the resolution
should be high enough to satisfy this requirement.

Most studies on internal wave attractors are theoretical, focusing on the derivation
of analytical models for the attractors, with and without viscosity. Experimental work
was performed recently, starting with laboratory evidence of an internal wave attractor
in a trapezoidal stably stratified water tank (Maas et al. 1997). The data of the latter
experiment were reanalysed by Lam & Maas (2008) and further experimental studies
were performed by Hazewinkel et al. (2008) (hereafter referred to as HBDM 08).

Nearly all numerical studies of wave attractors solve the linear equations of motions
(Rieutord et al. 2001; Rieutord, Valdettaro & Georgeot 2002; Ogilvie 2005). In the
recent paper by Drijfhout & Maas (2007), a nonlinear hydrostatic numerical ocean
model is used to investigate the dynamics of trapped waves in a closed channel in
the vicinity of a continental slope, but the forcing amplitude is tuned so that the flow
dynamics is linear at all times. To our knowledge, no attempt has been made yet to
investigate the fine structure of the attractor and its nonlinear behaviour by means of
nonlinear direct numerical simulations. This is the aim of the present paper. The MIT
general circulation model is used for this purpose at a high resolution so that a low
viscosity can be used, as discussed above. The results are carefully validated against
the laboratory experiment of HBDM08 to test the ability of the numerical code to
reproduce the singular solution associated with the attractor. In § 2, we present the
experimental and numerical setups, while the comparison between the numerical and
experimental results is reported in § 3. In § 4 we propose a simple model for the
thickness of the wave attractor, which we test against our numerical data and relate
to the theoretical work by Thomas & Stevenson (1972). Insight into the nonlinear
behaviour of the wave attractor is presented in § 5 before we draw conclusions in the
final section.

2. Laboratory and numerical setups
2.1. Laboratory experiment of HBDM08

The height and width of the tank in the experiment are respectively equal to 200 mm
and 101 mm; the length of the tank varies from 353 mm at the upper boundary to
453 mm at the bottom boundary, due to the presence of a sloping wall that makes an
angle α = 27◦ with the vertical (see figure 2 below).

The stratification is imposed by salt water whose density decreases linearly upwards,
with Nlab � 3.0 rad s−1. However, because the density flux through the free surface
and bottom boundary is equal to zero, the stratification cannot be maintained there
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and very thin diffusive mixed layers slowly develop from these boundaries. The
experimental viscosity has a value of 1 mm2 s−1, the Prandtl number of salt water
being equal to 700. The forcing mechanism of the wave field is as follows. Starting
from rest, the tank is subjected to an oscillation at frequency ωe =1.23 rad s−1

(associated with a period T = 5.11 s), leading to the generation of a wave field at the
same frequency. The frequency and tank geometry have been chosen so that a wave
field develops and gets focused toward an attractor.

This is the experiment we reproduce numerically, apart from some differences which
we explain below.

2.2. Numerical setup

The MIT general circulation model is used to solve the nonlinear, non-hydrostatic,
incompressible Boussinesq equations that govern the fluid dynamics (see Marshall
et al. 1997). No subgrid scale modelling is used in the present work, implying that the
simulations are direct (i.e. the diffusion operator is the ordinary Laplacian operator).

The symmetry of the forcing as well as the narrow width of the tank in the
laboratory experiment implies that the dynamical processes should be mainly two-
dimensional in a vertical plane; hence, in the numerical experiment, a two-dimensional
domain is used for simplicity. We also flip this numerical domain in the z-direction
so that the wall becomes of positive slope and can be easily handled by the code (we
also reverse the density field so that the stratification remains stable). The Boussinesq
equations are indeed invariant under this transformation.

We were able to reproduce the same attractor as in the laboratory experiment by
setting N to the value of 2.76 rad s−1 (instead of 3 rad s−1). We think that the origin
of this difference lies in the thickness of the mixed layers which develop at the free
surface and at the bottom of the tank, which are slightly different in the experiment
and in the simulation. Indeed, the attractor reflects onto these mixed layers.

To speed up the convergence towards the attractor, we chose the following forcing.
A barotropic current oscillating at frequency ωe and of amplitude 7.38 × 10−2 mm s−1

is imposed at the vertical boundary to force the flow. This amplitude has been chosen
to ensure that a linear regime sets in, as in the laboratory experiment. (To analyse
nonlinear effects in § 5, we carried out the same computation with a ten-times larger
amplitude.) In the laboratory experiment, the forcing regime is imposed over 50T

and then turned off. In the simulation, the forcing regime is turned off after 61T ,
to lengthen this regime and improve the statistics. The subsequent decay stage is
monitored over 51T .

Viscosity is set to ν = 1 mm2 s−1, as in the laboratory experiment, while the Prandtl
number has a value of 100. (A higher value of this parameter would lead to ill-resolved
smallest diffusive scales.)

Free-surface and free-slip conditions on the three other boundaries are set to prevent
under-resolved viscous boundary layers from appearing. However, the forcing chosen
requires an open-boundary condition on the vertical wall, which cancels the free-
slip condition at this boundary (the vertical velocity being set to zero there). As a
consequence, a very thin shear layer appears on the vertical wall during the forced
stage which quickly vanishes (in approximately 3T ) after forcing is turned off.

We use a Cartesian grid with horizontal and vertical grid sizes equal to dx =dz =
0.5 mm, the cells being shaved on the sloping wall to allow for the reflection of the
wave field. As we show in § 4, the thickness of the attractor is around 45 mm wide,
which is therefore described by 90 points. One period is discretized into 250 time
steps (implying that dt = 0.02044 s).
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Figure 1. (a) Evolution of the buoyancy field b as a function of time, at a point located in
the central part of the attractor along section S1 displayed in figure 2. (b) Same as (a) but for
∂zb.

In the following sections measurements of the buoyancy b = −g ρ ′/ρ0 are displayed,
where ρ0 is a constant reference density and ρ ′ is the density perturbation, computed
as the difference between the instantaneous density field and the initial density profile.

3. Comparison with the laboratory experiment of HBDM08
3.1. Overall behaviour of the fluid motions

The buoyancy field b is displayed versus time in figure 1(a) at a fixed location within
the attractor. Three regimes can be distinguished. From initial time until t � 30T , the
amplitude of the oscillations grows as the wave field organizes itself into an attractor.
A stationary regime is then reached, once the attractor has formed, implying that
some equilibrium has occurred; note that the mean (temporally averaged) buoyancy
is slightly negative because of forcing. The equilibrium regime ceases at 61T , when
forcing is turned off, and the flow relaxes to rest through decaying oscillations. The
buoyancy field being computed as the difference between the instantaneous density
profile and the initial profile (up to a multiplicative constant), the non-zero final value
of b attests to the fact that mixing has been induced.

As in HBDM08, in which the synthetic schlieren method is used, we computed the
vertical gradient of the buoyancy field, ∂zb, as a function of time (figure 1b). The
remarkable point is that the maximum amplitude of this field remains unchanged
during a few periods after forcing has been turned off. Since the amplitude of b

decays, this implies that the vertical scale associated with the buoyancy field decreases
after the forcing is turned off, thus compensating for the decay in amplitude of b.
This point is further discussed below.

To visualize the attractor, we follow HBDM08 and filter the field ∂xb at frequency
ωe during the equilibrium regime. The filtered field, denoted Bωe

(x, z), is defined by

Bωe
(x, z) =

2

T

∫ tf

ti

[∂xb(x, z, t)] eiωe(t−ti )dt, (3.1)

with ti =40T and tf = 61T .
The modulus |Bωe

| of the filtered field is displayed in figure 2(a), thereby showing the
spatial distribution of the amplitude. The attractor predicted by ray theory, namely
the trajectory of the wave-induced energy at large times, is also displayed with a
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Figure 2. Harmonic analysis of ∂xb from t =40T to t = 61T . (a) Amplitude field. The white
arrow points towards the direction of the group velocity cg and the four sections S1–S4 used
in the analysis are displayed (the slope angle α is also shown). The location of the attractor
as predicted by ray theory is indicated with a dashed line. (b) Phase field. The black arrows
point toward the direction of phase propagation, or k, for each branch; the propagation angle
θ is shown.
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Figure 3. Constant contours of ∂zb at (a) t = 63T , (b) t = 71T , (c) t = 79T , (d) t = 87T . The
location of the attractor as predicted by ray theory is indicated with a thin black line.

dashed line. Several striking features may be noted in this figure. The amplitude is
focused within a well-defined structure – the attractor – made of four branches. The
amplitude is maximum at the beginning of the first branch on the inclined wall, where
the focusing point is located. The amplitude constantly decays along the attractor
when travelling from the focusing point, due to viscous effects. This decrease of the
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amplitude provides the direction of the group velocity cg which is clockwise, consistent
with the direction in which focusing occurs. Precisely the same structure was obtained
by HBDM08 in their laboratory experiment. The only difference lies in the values of
the amplitude, which cannot be compared because the forcings are different.

To complement figure 2(a), the phase of the buoyancy field at t = tf , given by
arg(Bωe

eiϕ) with ϕ = 2π(tf − ti)/T , is displayed in figure 2(b). The direction of
propagation of the phase can be read directly from this figure (as indicated by the
arrows). Assuming the wave field is spatially monochromatic within the attractor, a
wave vector k can be defined, which is aligned with the spatial gradient of the phase.
The wavelength associated with k will be referred to as the apparent wavelength
hereafter. Since the vertical component of k and of the group velocity are of opposite
sign for internal gravity waves, the direction of the group velocity can also be inferred
from figure 2(b).

The modification of the attractor once forcing has been turned off, from t = 61T , is
illustrated in figure 3 through contours of ∂zb plotted at successive times. The apparent
wavelength of the attractor decreases with time, suggesting, following HBDM08, that
the short wavelengths ‘survive’ longer than the large ones. This striking behaviour is
further discussed in the next section and will serve as a precise comparison between
our numerical model and the experimental results.

3.2. Spatial structure of the wave attractor

The striking evolution of the apparent wavelength during the decay stage suggests
performing a spatial spectral analysis of the wave field. For this purpose, we introduce
a natural coordinate system (s, η), with s the along-branch abscissa starting from the
focusing point and oriented in the same direction as cg , and η the cross-branch
ordinate whose origin is on a branch and oriented to get a direct coordinate system
for each branch. We choose four locations, each in the middle of a different branch,
and we perform the analyses along the cross-attractor sections which start from these
points and which we call S1–S4. Along S1, for instance, we write ∂ηb as

∂ηb(η, t)|S1 =

∫ +∞

−∞
A(k, t)ei(kη−ωt)dk (3.2)

using k = |k|, this analysis also being performed along S2–S4.
Figure 4 shows the spectra |A|2 of S1–S4 at t = 50T during the equilibrium regime

for the simulation and the experiment of HBDM08. Both approaches show that the
spectrum is continuous, implying that not just a single scale is involved, and that
it displays a maximum, implying that a dominant scale exists. As one progresses
along the attractor from S1 to S4, the peak shifts towards small values of k (i.e. large
values of wavelength) and the maximum amplitude decreases, because of diffusive
effects. This is consistent with the apparent broadening and decaying amplitude of
the attractor after the focusing point observed in figure 2.

Despite the qualitative agreement between the simulation and the laboratory
experiment, a difference should be noted: the decrease in amplitude along the
attractor is stronger in the experiment. This difference might be explained by damping
effects being larger in the experiment than in the simulation. It should indeed be
emphasized that the experiment is three-dimensional so that boundary layers also
exist in the third direction, which provide an additional sink of energy (McEwan
1971). Such boundary layers are prohibited by the two-dimensional geometry of the
simulation.
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Figure 4. Spectral analysis along sections S1–S4 at time t = 50T . (a) Results from the
numerical simulation. (b) Tank measurements by HBDM08.
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Figure 5. Spectral analysis along section S1 at times τ = 2T , τ = 10T , τ =18T and τ =26T
after forcing has been turned off. (a) Simulation. (b) Experiment of HBDM08.

Spectra of S1 for the simulation and the experiment are displayed in figure 5 during
the decay stage, at different times. It is quite noteworthy that the decay in the total
amplitude now goes with a shift of the peak towards high values of k, as implied
by figure 1(b), and not toward small values of k, as a simple argument based upon
viscous effects would imply. The difference in the evolution of the amplitude between
experiment and simulation can still be noted. The amplitude decays less rapidly in
the simulation and its maximum value is nearly the same at 63T and 72T . This
is consistent with the behaviour observed in figure 1(b) for ∂zb: the reduction in
amplitude of the buoyancy is made up for by the decrease of the attractor thickness,
so that the amplitude of ∂zb remains nearly unchanged during several periods after
forcing has been turned off. This effect is not visible in the experiment, possibly
because of the presence of boundary layers in the third direction, as argued above,
which promote energy dissipation.

We again follow HBDM08 to explain the behaviour of these spectra. The forcing
excites the largest vertical scale of the tank, which has wavenumber k0 = π/H . This
new-born wave packet propagates and gets focused at the sloping wall, propagates
and gets focused again. This focusing results in a transfer of energy towards high
wavenumbers (small scales) and the wavenumber of the wave packet can be considered
as a measure of its ‘age’. Viscous damping then acts, and the smaller the scale is,
the more efficient this damping is. At the beginning of its life, amplification thus
dominates and the amplitude of the wave packet increases; but viscous damping
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increases as well, which eventually balances amplification. Seen from a continuous
point of view, the balance between focusing and viscous damping in the equilibrium
regime results in the spectra displayed in figure 4. When forcing is turned off, creation
of low-wavenumber wave packets stops, but not the propagation and reflections of
existing wave packets. Their scales get smaller and smaller because of focusing and
those wave packets eventually get dissipated. This is what we observed in figures 3
and 5.

4. A simple model for the thickness of the wave attractor
4.1. Model

In the analysis developed in HBDM08 and summarized in the previous section, the
spatial structure of the attractor is accounted for by the evolution of a wave packet
travelling along the attractor. The apparent wavelength of this wave packet defines a
scale, which may be used to characterize the thickness of the attractor. Let us derive
a simple model for this scale, referred to as λ in the following.

As in Rieutord et al. (2001) and HBDM08, we argue that the thickness of the
attractor is set by the competition between focusing, which reduces the scale by a
factor γ = sin(θ + α)/ sin(θ − α) and diffusion, which makes that scale grow.

Along the attractor, as long as the focusing point is not crossed, the only effect acting
on the wave packet is diffusion. Hence, from the diffusion scaling law, λ(dλ/dt) = Cν,
where C is constant and ν is the viscosity. Introducing the coordinate s along the
attractor yields λ(dλ/ds)(ds/dt) = Cν. With ds/dt = |cg| = N(sin θ)λ/2π, one gets

λ2 dλ

ds
=

2πCν

Nsinθ
. (4.1)

We integrate along the attractor over its length La in the direction of energy
propagation from s =0+ (just after the focusing point) to s = L−

a (just before it).
If this is the nth travel of the wave packet, we get

λ3
n(L

−
a ) − λ3

n(0
+) = 6πC

νLa

Nsinθ
. (4.2)

When the wave packet crosses the focusing point, its thickness is focused again so
that λn+1(0

+) = λn(L
−
a )/γ . In the equilibrium regime, λn+1(0

+) = λn(0
+). It follows that

λ(0+) = C ′(γ 3 − 1)−1/3

(
νLa

Nsinθ

)1/3

, (4.3)

dropping the index n and with C ′ = (6πC)1/3. At any location along the attractor, the
thickness is therefore defined as

λ(s) = C ′
(

νLa

Nsinθ

)1/3 (
s

La

+
1

γ 3 − 1

)1/3

. (4.4)

Rieutord et al. (2001) guessed from their numerical simulations that the thickness
of the attractor should scale as E1/3, where E is the Ekman number, assumed � 1;
in practice, this parameter should be smaller than 10−6 for this scaling to hold. The
analogue of the Ekman number in our study is ν/(ND2), where D is a typical scale
of the attractor. Using D = La , the values of ν/(NL2

a) are smaller than 10−6 in our
simulation (since La = 954 mm). And expression (4.4) indeed involves a dependency
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on the power 1/3 of this parameter, when written in a dimensionless manner:

λ(s)

La

= C ′(sinθ)−1/3

(
ν

NL2
a

)1/3 (
s

La

+
1

γ 3 − 1

)1/3

. (4.5)

Also, in Ogilvie (2005), an asymptotic (ν → 0) solution is derived to describe the
attractor resulting from a periodic forcing. The derivation fundamentally relies on
the assumption that the thickness of the attractor scales like ν1/3, in agreement with
our model.

4.2. Analogy with an internal wave beam emitted by an oscillating object

When the focusing parameter γ is much larger than 1, expression (4.4) becomes

λγ 	1(s) = C ′
( νs

Nsinθ

)1/3

. (4.6)

This expression is identical to that obtained by Thomas & Stevenson (1972) when
modelling the structure of a wave beam emitted by an oscillating two-dimensional
object (see also Gostiaux 2006). The emission region is the location where the wave
beam is tangent to the object, the direction of the beam being set by the dispersion
relation. Since the size of the object does not come into play in this theory, the
far-field limit is assumed. In other words, the object is seen as a source point. A
length scale still comes into play, which is the thickness of the boundary layer on the
object. Expression (4.6) may indeed be written as C ′(δ2s/tanθ)1/3, where δ =

√
ν/ω is

the thickness of the boundary layer.
The analogy of relation (4.6) with the expression of Thomas & Stevenson (1972)

may be interpreted as follows. Consider a frame of reference attached to the vertical
forcing boundary. In this frame, the inclined wall oscillates and may be considered as
the actual source of energy for the wave field. Hence, in this frame, the wave attractor
becomes a wave beam emitted by an oscillating object. The emission region is on the
inclined wall, at the location where the reflected beam coincides with the incident one.
And the thickness δ is that of the boundary layer on the inclined wall. The attractor
may then be interpreted as a wave beam emitted by an infinitely small oscillating
source located at the focusing point.

The fact that the analogy is obtained for γ 	 1 suggests interpreting 1/γ as the
(properly scaled) size of the source. When γ is large, the factor (γ 3 − 1)−1/3 becomes
quickly negligible with respect to s/La as one moves away from the source, implying
that the source is infinitely far.

4.3. Numerical validation

The validation of relation (4.5) requires the computation of the thickness λ of the
attractor. As noted above, the apparent wavelength of the wave packet travelling
along the attractor serves as a measure of the attractor thickness. To compute such
an apparent wavelength, we plot in figure 6(a) the density perturbation profile across
the attractor at a given position and time during the equilibrium regime. As indicated
in the figure, an apparent wavelength can be defined, as twice the distance between
two extrema of the profile.

The apparent wavelength has therefore been computed from the plot of the density
perturbation profile at different locations on the second, third and fourth branches
after the focusing point (the first branch being too close to the sloping wall to get
proper measurements). λ is plotted against s/La + 1/(γ 3 − 1) in log-log scale in figure
6(b) to find a possible power relation. Linear regression shows that λ∝ (s/La +1/(γ 3−
1))0.229±0.011.
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Figure 6. (a) Definition of the half-wavelength of the density perturbation field at a given
time. (b) Plot of λ as a function of s/La +1/(γ 3 − 1) in log-log scale for the configuration with
γ = 1.67 (stars) and the associated linear fit (dashed line), as well as for the configuration with
γ = 6.96 (crosses) and the associated linear fit (solid line).

In this simulation, γ = 1.67 so that 1/(γ 3 − 1) is equal to 0.27 and is never small
with respect to s/La . We therefore ran another simulation with a higher value of
γ . This simulation corresponds to the same tank as in the experiment of HBDM08
except that the bottom length is 290 mm instead of 453 mm and the top length
is 140 mm instead of 353 mm. It is filled with 300 mm of water, with stratification
N = 2 rad s−1, and the forcing frequency is ωe = 1.65 rad s−1. In this configuration,
the beams have a steeper slope with an associated γ =6.96. Under this condition,
one can approximate expression (4.4) by (4.6) as soon as s 	 La/300 ≈ 2.5 mm (with
La = 726 mm in this case). Results for this simulation are also displayed in figure 6(b).
We find λ∝ (s/La + 1/(γ 3 − 1))0.417±0.015.

These two cases show that neither power exponent is equal to 1/3 but both
exponents are close to it, within 30 %. The observed discrepancy very likely comes
from the main assumption of our (very simple) model, which is that a single scale
characterizes the attractor. The spectra displayed in figures 4 and 5 show indeed that
only a dominant scale exists among a continuum of scales.

5. Nonlinear effects
5.1. Existence of nonlinear effects

The forcing amplitude in the previous runs was low enough to ensure that a linear
regime was reached. To investigate the manifestation of nonlinear effects, we ran a
simulation analogous to that described in § 3, except that the forcing amplitude is ten
times larger. This run is displayed in figure 7, through constant contours of ∂zb two
periods after forcing has been turned off.

Since forcing occurs at frequency ωe, all motions oscillate at that frequency in a
linear regime. Nonlinear effects yield new motions at a harmonic frequency, which
are visible in figure 7: steep wave beams at frequency 2ωe, distinct from the attractor,
propagate in the domain. Motions at frequency 2ωe and 3ωe (using the same filtering
method as in § 3.1) are displayed in figure 8. Since 2ω/N = 0.89 < 1, the 2ωe-field can
propagate but, in the present case, does not reach an attractor. As shown in figure
8(a), this field is generated at the locations where the attractor reflects on the vertical
and horizontal boundaries. At these locations the superpositions of the branches
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make the nonlinear terms of the governing equations non-zero, as shown by Tabaei,
Akylas & Lamb (2005) in the more general context of wave beams. The focusing
point has a particular status in the present case as the 2ωe beam has a propagation
angle equal to the slope of the wall, which is why no emitted beam is clearly
observed.

On the other hand, 3ωe/N =1.33 > 1 so that the 3ωe-field cannot propagate.
Figure 8(b) shows that this motion is trapped within the attractor. Its amplitude
is the strongest at the crossings between the ωe-branches of the attractor and the
2ωe-beam emitted at the reflection location on the upper boundary, attesting to its
nonlinear generation from these two frequency motions.

5.2. Mixing

As shown above, the thickness of the attractor during the equilibrium regime is small,
in the sense that it is set by an equilibrium between focusing and viscous effects.
Strong gradients of the velocity and fluctuating density fields therefore occur all along
the attractor, which result in local mixing of mass. As in any stably stratified fluid,
local mixing yields horizontal density, and therefore pressure, gradients so that the
mixed fluid travels along iso-density surfaces away from the mixed region (for instance
Browand, Guyomar & Yoon 1987; McPhee-Shaw & Kunze 2002). Rieutord & Noui
(1999) pointed out the important role wave attractors should play in the transport
properties of the flow. More recently Tilgner (2007), using asymptotic expansion of
the flow variables in a rotating fluid, was able to show that nonlinear interactions
within the attractor could produce a mean flow.

In the present case, we found that the relative change in N due to mixing between
initial and final times of the simulation is not larger than 0.3%. This value depends
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upon the duration of the forcing stage but is still very weak. Mixing is in fact usually
small in a uniformly stratified fluid because the scale of the density profile is the
height of the tank container, which is much larger than the vertical scale of the
motions which mix the fluid. In the present case, the thickness of the attractor (a few
centimetres) should be compared with the water height (20 cm).

The ability of the attractor to mix the fluid can be estimated by computing
a turbulent diffusivity during the equilibrium regime. Since this regime is weakly
nonlinear, we expect the turbulent diffusivity to be close to the molecular diffusivity,
but it is still useful to check this.

In the present case of a uniformly stratified fluid, the turbulent diffusivity is defined
by (Winters et al. 1995):

Kt =
g

ρ0

φd

N2
, (5.1)

where φd(z, t) is the instantaneous diffusive flux of density due to mixing. Since the
fluid is not turbulent in the attractor, φd may be computed as

φd = κ
g

ρ0

|∇ρ̃|2
N2

, (5.2)

where ρ̃ refers to the density field and the overline is a horizontal average. It follows
that the turbulent diffusivity can eventually be computed as

Kt

κ
=

(
g

ρ0

)2 |∇ρ̃|2
N4

. (5.3)

The ratio Kt/κ in the attractor can easily be estimated from this expression.
Decomposing the density field ρ̃ into the initial linear part and the fluctuations yields
Kt/κ = 1 + 2∂zb/N2 + |∇b|2/N4. In the attractor, where the changes are dominantly
in the cross-direction (i.e. ∂/∂s � ∂/∂η), we can write |∇b|2 � (∂ηb)2 � (sinθ)−2(∂zb)2.
From the colour scale of figure 7, we may take a value of 0.01 as an upper bound
for |∂zb|/N2 so that Kt � κ in the attractor. The same is, of course, true outside the
attractor since slow large-scale motions dominate there.

6. Summary and conclusion
The purpose of this paper is to model numerically an internal gravity wave

attractor using the MIT general circulation model, to go beyond previous approaches
and address questions about nonlinear effects and mixing. For this purpose, the
laboratory experiment of HBDM08 is reproduced and a careful comparison with
the experimental results is carried out. The geometry of the experiment consists
of a trapezoidal tank with a uniform stratification. Despite the two-dimensional
configuration of our simulation, very good agreement with the experiment is obtained.
The only difference is an insufficient decrease of the amplitude along the attractor
and we invoke the absence of lateral boundary layers in the simulation to account
for this difference.

We propose a simple model for the thickness of the attractor based upon the
opposite effects of viscous diffusion and focusing. This model predicts that the
thickness should evolve as the 1/3 power of the ratio of viscous to stratification
effects. This agrees well with results by Rieutord et al. (2001) and Ogilvie (2005)
for rotating fluids (this ratio becoming the Ekman number). When the focusing
parameter is larger than about 3 (so that its cube power is much larger than 1),
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the expression for the thickness becomes identical to that predicted by Thomas &
Stevenson (1972) for a wave beam in the far-field limit. This analogy allows us to
interpret the wave attractor as a wave beam emitted by an oscillating source point
located at the focusing point.

A linear regime was considered up to this point and the forcing amplitude was
increased by a factor 10 to get insight into nonlinear effects and induced mixing.
Harmonics at twice the forcing frequency were found, as a result of nonlinear
interaction between branches of the attractor, consistent with the prediction of Tabaei
et al. (2005) for wave beams. The second harmonic motions do not converge toward
an attractor and propagate within the closed domain. Third harmonic motions were
also found, which are trapped in the attractor because their frequency is larger than
the Brunt–Väisälä frequency. Consistently with the weakly nonlinear regime, we found
that the turbulent diffusivity within the attractor is hardly larger than the molecular
diffusivity.

Several directions of research may be pursued. The simplest one is to consider
a nonlinear wave attractor, by increasing again the forcing amplitude. The fate of
the attractor in this case is not obvious: harmonics should be produced, which may
act as perturbation to the intense vorticity and density layers of the attractor and
destabilize them via a Kelvin–Helmholtz instability. Does the attractor form again
once the turbulent scales have been dissipated? Also, if the forcing is maintained over
a sufficiently long time, induced mixing may modify the background stratification,
resulting in a step-like profile which should modify the attractor. The shape of the
fluid container has also a strong influence on the attractor, as studied by Maas &
Lam (1995) in a linear context. All these simplified approaches are prerequisites before
addressing a natural geophysical situation, such as a closed oceanic basin.

We thank Leo Maas who suggested that we model numerically the internal
wave attractor. We also thank Jeroen Hazewinkel for having provided an earlier
draft of his experimental paper, which greatly helped in the detailed comparison
with the simulation. Fruitful discussions with J. Hazewinkel and L. Maas are also
acknowledged. Computations were performed on the French Supercomputer Center
IDRIS, through contract 070580.
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